www.wikidata.uk-ua.nina.az
Diferencialna forma poryadku k displaystyle k abo k displaystyle k forma kososimetrichne tenzorne pole tipu 0 k displaystyle 0 k na dotichnomu rozsharuvanni mnogovidu Diferencialni formi vvedeni francuzkim matematikom Eli Kartanom na pochatku XX stolittya Formalizm diferencialnih form ye zruchnim v bagatoh rozdilah teoretichnoyi fiziki i matematiki zokrema v teoretichnij mehanici simplektichnij geometriyi kvantovij teoriyi polya Prostir k displaystyle k form na mnogovidi M displaystyle M zvichajno poznachayut W k M displaystyle Omega k M Zmist 1 Viznachennya 1 1 Invariantne 1 2 Cherez lokalni karti 2 Pov yazani viznachennya 2 1 Zovnishnya pohidna 3 Vlastivosti 3 1 Algebrayichni operaciyi 4 Zvorotnij obraz 5 Integruvannya 5 1 Teorema Stoksa 6 Diferencialni formi v elektromagnetizmi 7 Prikladi 8 Div takozh 9 DzherelaViznachennya RedaguvatiInvariantne Redaguvati U diferencialnij geometriyi diferencialna forma stepenya k displaystyle k nbsp ce gladkij peretin k displaystyle k nbsp go zovnishnogo stepenya kodotichnogo rozsharuvannya mnogovidu Nehaj M gladkij mnogovid TpM dotichnij prostir mnogovidu M v tochci p T pM kodotichnij prostir mnogovidu M v tochci p Poznachmo L k T p M displaystyle Lambda k T p M nbsp vektornij prostir znakozminnih linijnih za vsima elementami vidobrazhen vidu b T p M T p M R displaystyle beta colon T p M times cdots times T p M to mathbb R nbsp Todi diferencialna k forma w displaystyle omega nbsp ce vidobrazhennya w p L k T p M displaystyle omega colon p to Lambda k T p M nbsp v dovilnij tochci p M pri chomu w p V 1 p V k p C M R displaystyle omega p V 1 p ldots V k p in C infty M mathbb R nbsp de V 1 p V k p displaystyle V 1 p ldots V k p nbsp dovilni gladki vektorni polya Inodi u viznachenni diferencialnih form ne vimagayetsya gladkosti Formi sho zadovolnyayut ci dodatkovi umovi nazivayut todi gladkimi diferencialnimi formami Cherez lokalni karti Redaguvati Yaksho x 1 x n displaystyle x 1 x n nbsp lokalna sistema koordinat v oblasti U M displaystyle U in M nbsp to formi d x 1 d x n displaystyle dx 1 dx n nbsp utvoryuyut bazis u kodotichnomu prostori T X M displaystyle T X M nbsp Tomu bud yaka zovnishnya k forma zapisuyetsya v U u viglyadi w 1 i 1 lt i 2 lt lt i k n f i 1 i 2 i k x 1 x n d x i 1 d x i 2 d x i k displaystyle omega sum 1 leqslant i 1 lt i 2 lt ldots lt i k leqslant n f i 1 i 2 ldots i k x 1 ldots x n dx i 1 wedge dx i 2 wedge ldots wedge dx i k nbsp de f i 1 i 2 i k displaystyle f i 1 i 2 ldots i k nbsp gladki funkciyi d x i displaystyle dx i nbsp diferencial i displaystyle i nbsp yi koordinati x i displaystyle x i nbsp funkciya vid vektora sho viznachaye jogo koordinatu z nomerom i displaystyle i nbsp a displaystyle wedge nbsp zovnishnij dobutok Pri zmini koordinat ce podannya zminyuyetsya Na gladkomu mnogovidi k formi mozhe buti viznacheno yak formi na kartah yaki uzgodzheno na skleyuvannyah Pov yazani viznachennya RedaguvatiZovnishnya pohidna Redaguvati Dokladnishe Zovnishnya pohidnaLinijne vidobrazhennya d W k M W k 1 M displaystyle d Omega k M rightarrow Omega k 1 M nbsp nazivayetsya zovnishnoyu pohidnoyu yaksho Dlya p 0 displaystyle p 0 nbsp vono zbigayetsya zi zvichajnim diferencialom funkciyi d w k w p d w k w p 1 k w k d w p displaystyle d omega k wedge omega p d omega k wedge omega p 1 k omega k wedge d omega p nbsp Dlya bud yakoyi formi vikonuyetsya rivnist d d w 0 displaystyle d d omega 0 nbsp Dlya dovilnogo gladkogo mnogovidu vidobrazhennya z danimi vlastivostyami isnuye i ye yedinim U lokalnih koordinatah zovnishnij diferencial formi w W k M displaystyle omega in Omega k M nbsp mozhna zapisati za dopomogoyu formuli d w 1 i 1 lt i 2 lt lt i k n 1 j n f i 1 i 2 i k x j x 1 x n d x j d x i 1 d x i 2 d x i k displaystyle d omega sum 1 leqslant i 1 lt i 2 lt ldots lt i k leqslant n sum 1 leqslant j leqslant n frac partial f i 1 i 2 ldots i k partial x j x 1 dots x n dx j wedge dx i 1 wedge dx i 2 wedge ldots wedge dx i k nbsp Diferencialna forma nazivayetsya zamknenoyu yaksho yiyi zovnishnya pohidna dorivnyuye 0 k forma nazivayetsya tochnoyu yaksho yiyi mozhlivo predstaviti yak diferencial deyakoyi k 1 formi Faktorgrupa H d R k W k d W k 1 displaystyle H dR k bar Omega k d Omega k 1 nbsp zamknenih k form po tochnih k formah nazivayetsya k displaystyle k nbsp mirnoyu grupoyu kogomologij de Rama Teorema de Rama stverdzhuye sho vona izomorfna k mirnij grupi singulyarnih kogomologij Vnutrishnoyu pohidnoyu formi w displaystyle omega nbsp po vektornomu polyu v displaystyle mathbf v nbsp nazivayetsya formai v w u 1 u n 1 w v u 1 u n 1 displaystyle i mathbf v omega u 1 dots u n 1 omega mathbf v u 1 dots u n 1 nbsp Vlastivosti RedaguvatiDlya diferencialiv diferencialnih form w F displaystyle omega F nbsp vektornogo polya F displaystyle F nbsp spravedlivo d d w F 0 displaystyle d d omega F 0 nbsp d w F 0 w F 1 displaystyle d omega F 0 omega nabla F 1 nbsp d w F 1 w r o t F 2 displaystyle d omega F 1 omega rotF 2 nbsp d w F 2 w d i v F 3 displaystyle d omega F 2 omega divF 3 nbsp d w F 3 w L 2 F 4 displaystyle d omega F 3 omega L2F 4 nbsp Diferencialnu formu mozhna rozglyadati yak pole polilinijnih kososimetrichnih funkcij vid k displaystyle k nbsp vektoriv Vnutrishnye diferenciyuvannya ye linijnim i zadovolnyaye gradujovanomu pravilu Lejbnica Vono pov yazane iz zovnishnim diferenciyuvannyam i pohidnoyu Li formuloyu gomotopiyi d i v i v d L v displaystyle di mathbf v i mathbf v d L mathbf v nbsp Algebrayichni operaciyi Redaguvati Diferencialni formi poryadku k displaystyle k nbsp zadani u diferencialnomu mnogovidi M displaystyle M nbsp utvoryuyut modul W k M displaystyle Omega k M nbsp nad kilcem C M displaystyle C infty M nbsp Zokrema dlya diferencialnih form poryadku k displaystyle k nbsp viznacheno dodavannya i mnozhennya na funkciyu a b x v 1 v k a x v 1 v k b x v 1 v k displaystyle alpha beta x v 1 dots v k alpha x v 1 dots v k beta x v 1 dots v k nbsp f a x v 1 v k f x a x v 1 v k displaystyle f alpha x v 1 dots v k f x cdot alpha x v 1 dots v k nbsp Zovnishnij dobutokZovnishnij dobutok form a displaystyle alpha nbsp i b displaystyle beta nbsp poryadkiv k displaystyle k nbsp i q displaystyle q nbsp viznachayetsya za dopomogoyu nastupnoyi formuli a b x v 1 v k q 1 k q e s a x v s 1 v s k b x v s k 1 v s k q displaystyle alpha wedge beta x v 1 dots v k q frac 1 k q sum varepsilon sigma cdot alpha x v sigma 1 dots v sigma k cdot beta x v sigma k 1 dots v sigma k q nbsp de e s displaystyle varepsilon sigma nbsp poznachaye znak perestanovki s displaystyle sigma nbsp i suma beretsya po vsih perestanovkah s displaystyle sigma nbsp chisel 1 k q displaystyle 1 k q nbsp Rezultatom dobutku ye diferencialna forma poryadku k q displaystyle k q nbsp Z viznachenimi algebrayichnimi operaciyami mnozhina W M W k M displaystyle Omega M oplus Omega k M nbsp ye gradujovanoyu algebroyu sho zadovolnyaye gradujovanomu zakonu komutativnosti dlya form a displaystyle alpha nbsp i b displaystyle beta nbsp poryadkiv k displaystyle k nbsp i q displaystyle q nbsp Vikonuyetsya a b 1 k q b a displaystyle alpha wedge beta 1 kq beta wedge alpha nbsp Zvorotnij obraz RedaguvatiYaksho vidobrazhennya f M N displaystyle f M rightarrow N nbsp ye gladkim a displaystyle alpha nbsp diferencialna forma poryadku k displaystyle k nbsp na mnogovidi N displaystyle N nbsp todi mozhna viznachiti diferencialnu formu f a displaystyle f alpha nbsp poryadku k displaystyle k nbsp viznachenu na M displaystyle M nbsp f a x v 1 v k a f x d f x v 1 d f x v k displaystyle f alpha x v 1 dots v k alpha f x mathrm d f x v 1 dots mathrm d f x v k nbsp Dane vidobrazhennya zadovolnyaye rivnostyam f a b f a f b displaystyle f alpha beta f alpha f beta nbsp f g a g f f a displaystyle f g cdot alpha g circ f cdot f alpha nbsp f a b f a f b displaystyle f alpha wedge beta f alpha wedge f beta nbsp de a b displaystyle alpha beta nbsp diferencialni formi na N a g funkciya viznachena na N Otzhe vidobrazhennya f W N W M displaystyle f Omega N rightarrow Omega M nbsp viznachaye gomomorfizm gradujovanih algebr Dane vidobrazhennya takozh mozhna zapisati u lokalnih koordinatah Nehaj x1 xm koordinati na M that y1 yn koordinati na N i ci koordinati pov yazani rivnostyami yi fi x1 xm dlya vsih i Todi lokalno na N w mozhna zapisati yak w i 1 lt lt i k w i 1 i k d y i 1 d y i k displaystyle omega sum i 1 lt cdots lt i k omega i 1 cdots i k dy i 1 wedge cdots wedge dy i k nbsp de dlya dovilnogo viboru i1 ik w i 1 i k displaystyle omega i 1 cdots i k nbsp dijsna funkciya zminnih y1 yn Z vlastivostej zvorotnogo obrazu oderzhuyetsya formula dlya f w f w i 1 lt lt i k w i 1 i k f d f i 1 d f i n displaystyle f omega sum i 1 lt cdots lt i k omega i 1 cdots i k circ f df i 1 wedge cdots wedge df i n nbsp Kozhnu zovnishnyu pohidnu dfi mozhe buti zapisano v terminah dx1 dxm Vidpovidnu k formu mozhe buti zapisano za dopomogoyu matrici Yakobi f w i 1 lt lt i k j 1 lt lt j k w i 1 i k f f i 1 f i k x j 1 x j k d x j 1 d x j k displaystyle f omega sum i 1 lt cdots lt i k sum j 1 lt cdots lt j k omega i 1 cdots i k circ f frac partial f i 1 ldots f i k partial x j 1 ldots x j k dx j 1 wedge cdots wedge dx j k nbsp Integruvannya RedaguvatiNehaj w a i 1 i k x d x i 1 d x i k displaystyle omega sum a i 1 dots i k mathbf x dx i 1 wedge cdots wedge dx i k nbsp diferencialna forma i S diferencijovnij mnogovid parametrizovanij v deyakij oblasti D R n displaystyle D in mathbb R n nbsp S u x 1 u x n u displaystyle S mathbf u x 1 mathbf u dots x n mathbf u nbsp Todi mozhna viznachiti integral S w D a i 1 i k S u x i 1 x i k u 1 u k d u 1 d u k displaystyle int S omega int D sum a i 1 dots i k S mathbf u frac partial x i 1 dots x i k partial u 1 dots u k du 1 ldots du k nbsp de x i 1 x i k u 1 u k displaystyle frac partial x i 1 dots x i k partial u 1 dots u k nbsp viznachnik matrici Yakobi Teorema Stoksa Redaguvati Teorema Stoksa ye osnovoyu dlya bilshosti zastosuvan diferencialnih form Yaksho w displaystyle omega nbsp n 1 forma z kompaktnim nosiyem u M i M granicya mnogovidu M z indukovanoyu oriyentaciyeyu to vikonuyetsya rivnist M d w M w displaystyle int M d omega oint partial M omega nbsp Chastkovimi vipadkami ciyeyi zagalnoyi teoremi ye osnovna teorema analizu teorema Gausa Ostrogradskogo teorema Grina i zvichajna teorema Stoksa pro zv yazok linijnogo i poverhnevogo integraliv Diferencialni formi v elektromagnetizmi RedaguvatiDokladnishe Diferencialni formi v elektromagnetizmiMaksvellivska elektrodinamika velmi elegantno formulyuyetsya movoyu diferencialnih form v 4 vimirnomu prostori chasi Rozglyanemo 2 formu Faradeya sho vidpovidaye tenzoru elektromagnitnogo polya F 1 2 F a b d x a d x b displaystyle textbf F frac 1 2 F ab mathrm d x a wedge mathrm d x b nbsp Cya forma ye formoyu krivini trivialnogo golovnogo rozsharuvannya zi strukturnoyu grupoyu U 1 za dopomogoyu yakogo mozhe buti opisano klasichnu elektrodinamiku ta kalibruvalnu teoriyu 3 forma strumu dualna do 4 vektoru strumu maye viglyad J J a e a b c d d x b d x c d x d displaystyle textbf J J a varepsilon abcd mathrm d x b wedge mathrm d x c wedge mathrm d x d nbsp U cih poznachennyah rivnyannya Maksvella mozhe buti duzhe kompaktno zapisano yak d F 0 displaystyle mathrm d textbf F textbf 0 nbsp d F J displaystyle mathrm d textbf F textbf J nbsp de displaystyle nbsp operator zirki Godzha Podibnim chinom mozhe buti opisano geometriyu zagalnoyi kalibruvalnoyi teoriyi 2 forma F displaystyle mathbf F nbsp takozh nazivayetsya 2 formoyu Maksvella Prikladi RedaguvatiZ poglyadu tenzornogo analizu 1 forma ye ne sho inshe yak kovektorne pole tobto 1 raz kovariantnij tenzor zadanij v kozhnij tochci p displaystyle p nbsp mnogovidu M displaystyle M nbsp i sho vidobrazhaye elementi dotichnogo prostoru T p M displaystyle T p M nbsp u mnozhinu dijsnih chisel R displaystyle mathbb R nbsp w p T p M R displaystyle omega p T p M rightarrow mathbb R nbsp Forma ob yemu priklad n displaystyle n nbsp formi na n displaystyle n nbsp mirnomu mnogovidi Simplektichna forma zamknena 2 forma w displaystyle omega nbsp na 2 n displaystyle 2n nbsp mnogovidi taka sho w n 0 displaystyle omega n not 0 nbsp Div takozh RedaguvatiZovnishnya algebra Zovnishnij dobutok Kogomologiya de Rama Tangencialnoznachna formaDzherela RedaguvatiZorich V A Matematicheskij analiz 9 e M MCNMO 2019 T 2 676 s ISBN 978 5 4439 1303 2 ros Kartan A Differencialnoe ischislenie Differencialnye formy M Mir 1971 Postnikov M M Lekcii po geometrii Semestr III Gladkie mnogoobraziya M Nauka 1987 U Rudin Osnovy matematicheskogo analiza M Mir 1976 Spivak M Matematicheskij analiz na mnogoobraziyah M Mir 1968 Flanders Harley 1989 Differential forms with applications to the physical sciences Mineola NY Dover Publications ISBN 0 486 66169 5 Morita Shigeyuki 2001 Geometry of Differential Forms AMS ISBN 0 8218 1045 6 Weintraub Steven 1997 Differential forms a complement to vector calculus Academic Press Inc ISBN 0 12 742510 1 Otrimano z https uk wikipedia org w index php title Diferencialna forma amp oldid 34150218