www.wikidata.uk-ua.nina.az
U zagalnij topologiyi ponyattya rivnomirnoyi strukturi i rivnomirnogo prostoru dozvolyayut uzagalniti taki ponyattya analizu i zokrema metrichnih prostoriv yak rivnomirna zbizhnist rivnomirna neperervnist povnota na bilsh shirokij klas topologichnih prostoriv Ponyattya vpershe bulo vvedene u 1937 roci francuzkim matematikom Andre Vejlem Zmist 1 Oznachennya 1 1 Za dopomogoyu otochen 1 2 Za dopomogoyu sistemi pokrittiv 1 3 Za dopomogoyu psevdometrik 2 Prikladi 3 Topologiya porodzhena rivnomirnoyu strukturoyu 4 Rivnomirna neperervnist 5 Povnota 6 DzherelaOznachennya red Za dopomogoyu otochen red Rivnomirnim prostorom nazivayetsya mnozhina z zadanoyu na nij rivnomirnoyu strukturoyu Rivnomirnoyu strukturoyu na mnozhini X displaystyle X nbsp nazivayetsya nepusta sim ya F displaystyle Phi nbsp pidmnozhin U X X displaystyle U subseteq X times X nbsp yaki zadovolnyayut taki aksiomi Yaksho U F displaystyle U in Phi nbsp todi D U displaystyle Delta subseteq U nbsp de D x x x X displaystyle Delta x x x in X nbsp tobto bud yaka mnozhina mistit diagonal Yaksho U F displaystyle U in Phi nbsp i U V displaystyle U subseteq V nbsp dlya V X X displaystyle V subseteq X times X nbsp to takozh V F displaystyle V in Phi nbsp Yaksho U F displaystyle U in Phi nbsp i V F displaystyle V in Phi nbsp to U V F displaystyle U cap V in Phi nbsp Razom iz poperednoyu vlastivistyu ce oznachaye sho F displaystyle Phi nbsp ye filtrom na X X displaystyle X times X nbsp Yaksho U F displaystyle U in Phi nbsp to isnuye V F displaystyle V in Phi nbsp take sho V V U displaystyle V circ V subseteq U nbsp de V U x z y X x y U y z V displaystyle V circ U x z exists y in X x y in U wedge y z in V nbsp Yaksho U F displaystyle U in Phi nbsp to U 1 F displaystyle U 1 in Phi nbsp de U 1 y x x y U displaystyle U 1 y x x y in U nbsp Elementi sim yi F displaystyle Phi nbsp nazivayutsya otochennyami inodi vikoristovuyetsya francuzkij termin anturazh Fundamentalnoyu sistemoyu otochen abo bazoyu otochen nazivayetsya sim ya mnozhin B F displaystyle B subset Phi nbsp taka sho kozhne otochennya mistit deyaku mnozhinu z B displaystyle B nbsp Za dopomogoyu sistemi pokrittiv red Rivnomirna struktura na mnozhini X displaystyle X nbsp mozhe buti viznachena takozh shlyahom zadannya na X displaystyle X nbsp sistemi pokrittiv sho zadovolnyaye nastupnim aksiomam Rivnomirnim prostorom X 8 displaystyle X Theta nbsp nazivayetsya mnozhina X displaystyle X nbsp iz sim yeyu pokrittiv 8 displaystyle Theta nbsp sho nazivayutsya rivnomirnimi pokrittyami i utvoryuyut filtr shodo tak zvanogo zirchastogo uporyadkuvannya Za oznachennyam dlya pokrittiv P displaystyle P nbsp i Q displaystyle Q nbsp P lt Q A P U Q B P A B B U displaystyle P lt star Q Leftrightarrow forall A in P exists U in Q forall B in P A cap B neq emptyset Rightarrow B subseteq U nbsp Aksiomatichno sim ya pokrittiv 8 displaystyle Theta nbsp maye zadovolnyati umovi X displaystyle X nbsp ye rivnomirnim pokrittyam tobto X 8 displaystyle X in Theta nbsp Yaksho P lt Q displaystyle P lt star Q nbsp i P displaystyle P nbsp ye rivnomirnim pokrittyam to Q displaystyle Q nbsp teye ye rivnomirnim pokrittyam Yaksho P displaystyle P nbsp i Q displaystyle Q nbsp ye rivnomirnimi pokrittyami to isnuye take rivnomirne pokrittya R displaystyle R nbsp sho R lt P displaystyle R lt star P nbsp i R lt Q displaystyle R lt star Q nbsp Yaksho rivnomirna struktura na X displaystyle X nbsp zadana sistemoyu otochen F displaystyle Phi nbsp to sistema 8 displaystyle Theta nbsp rivnomirnih pokrittiv X displaystyle X nbsp mozhe buti pobudovana tak Dlya bud yakogo V F displaystyle V in Phi nbsp sim ya a V V x x X displaystyle alpha V V x x in X nbsp de V x y x y V displaystyle V x y x y in V nbsp ye pokrittyam X displaystyle X nbsp Pokrittya P displaystyle P nbsp nalezhit 8 displaystyle Theta nbsp todi i tilki todi koli a V lt P displaystyle alpha V lt star P nbsp dlya deyakogo otochennya V F displaystyle V in Phi nbsp Navpaki dlya sistemi rivnomirnih pokrittiv 8 displaystyle Theta nbsp sistemu otochen utvoryuyut mnozhini vidu P A A A P P 8 displaystyle bigcup P A times A A in P P in Theta nbsp i vsilyaki mnozhini sho yih mistyat Za dopomogoyu psevdometrik red Rivnomirni prostori mozhna vvesti za dopomogoyu psevdometrik sho osoblivo chasto vikoristovuyetsya u funkcionalnomu analizi Dlya psevdometriki f X X R displaystyle f X times X rightarrow mathbb R nbsp dlya riznih dodatnih dijsnih chisel a displaystyle a nbsp mnozhini U a f 1 0 a displaystyle U a f 1 0 a nbsp utvoryuyut fundamentalnu sistemu otochen Porodzhena ciyeyu fundamentalnoyu sistemoyu otochen rivnomirna sistema nazivayetsya rivnomirnoyu sistemoyu porodzhenoyu psevdometrikoyu f displaystyle f nbsp Dlya sim yi psevdometrik f i i I displaystyle f i i in I nbsp rivnomirna struktura porodzhena sim yeyu f i displaystyle f i nbsp za oznachennyam ye rivnoyu tochnij verhnij granici rivnomirnih struktur porodzhenih kozhnoyu psevdometrikoyu Fundamentalna sistema otochen dlya takoyi rivnomirnoyi strukturi otrimuyetsya za dopomogoyu peretiniv riznih skinchennih mnozhin otochen zadanih okremimi psevdometrikami Yaksho sim ya psevdometrik ye skinchennoyu to porodzhena neyu rivnomirna struktura mozhe buti porodzhenoyu yedinoyu psevdometrikoyu Takozh yaksho dlya rivnomirnoyi strukturi isnuye zlichenna fundamentalna sistema otochen to vona mozhe buti porodzhenoyu yedinoyu psevdometrikoyu V zagalnomu vipadku dovilna rivnomirna struktura mozhe buti porodzhenoyu deyakoyu ne obov yazkovo zlichennoyu sim yeyu psevdometrik Prikladi red Bud yakij metrichnij prostir M d displaystyle M d nbsp ye rivnomirnim prostorom Zokrema ce viplivaye z togo sho kozhna metrika ye psevdometrikoyu Fundamentalnoyu sistemoyu otochen ye napriklad mnozhini vidu U a d 1 0 a m n M M d m n a displaystyle qquad U a triangleq d 1 0 a m n in M times M d m n leq a nbsp Cya rivnomirna struktura na M displaystyle M nbsp porodzhuye zvichajnu topologiyu metrichnogo prostoru na M displaystyle M nbsp Natomist isnuye bagato riznih rivnomirnih struktur sho porodzhuyut odnakovu topologiyu na M displaystyle M nbsp Napriklad dobutki metrik na skalyar porodzhuyut odnu rivnomirnu strukturu Yaksho rivnomirna struktura ye porodzhenoyu deyakoyu metrikoyu to vona nazivayetsya metrizovnoyu Rivnomirna struktura ye metrizovnoyu todi i tilki todi koli vona maye zlichennu fundamentalnu sistemu otochen Nehaj d 1 x y x y displaystyle d 1 x y x y nbsp zvichajna metrika na R displaystyle mathbb R nbsp i d 1 x y e x e y displaystyle d 1 x y e x e y nbsp Obidvi metriki porodzhuyut standartnu topologiyu na R displaystyle mathbb R nbsp prote porodzheni nimi rivnomirni strukturi ye riznimi oskilki napriklad x y x y lt 1 displaystyle x y x y lt 1 nbsp ye otochennyam v rivnomirnij strukturi dlya d 1 displaystyle d 1 nbsp ale ne dlya d 2 displaystyle d 2 nbsp Kozhna topologichna grupa G displaystyle G nbsp zokrema kozhen topologichnij vektornij prostir ye rivnomirnim prostorom yaksho prijnyati sho pidmnozhina V G G displaystyle V subset G times G nbsp ye otochennyam yaksho i tilki yaksho vona mistit mnozhinu x y x y 1 U displaystyle x y xy 1 in U nbsp dlya deyakogo okolu U displaystyle U nbsp odinichnogo elementa grupi G displaystyle G nbsp Cya rivnomirna struktura na G displaystyle G nbsp nazivayetsya pravoyu rivnomirnoyu strukturoyu na G displaystyle G nbsp oskilki dlya kozhnogo elementa a G displaystyle a in G nbsp prave mnozhennya x x a displaystyle x to xa nbsp ye rivnomirno neperervnim shodo ciyeyi rivnomirnoyi struktura Takozh mozhna vvesti livu rivnomirnu strukturu na G displaystyle G nbsp voni mozhut ne spivpadati ale porodzhuyut odnakovu topologiyu na G displaystyle G nbsp Dlya kozhnoyi topologichnoyi grupi G displaystyle G nbsp i yiyi pidgrupi H displaystyle H nbsp mnozhina livih klasiv sumizhnosti G H displaystyle G H nbsp ye rivnomirnim prostorom shodo rivnomirnoyi strukturi fundamentalnu sistemu otochen yakoyi utvoryuyut mnozhini U s t G H G H t U s displaystyle tilde U s t in G H times G H t in U cdot s nbsp de U displaystyle U nbsp probigaye vsi okoli odinici v G displaystyle G nbsp Porodzhena topologiya na G H displaystyle G H nbsp pri comu ye ekvivalentnoyu faktortopologiyi vidobrazhennya G G H displaystyle G to G H nbsp Topologiya porodzhena rivnomirnoyu strukturoyu red Bud yaka rivnomirna struktura F displaystyle Phi nbsp na mnozhini X displaystyle X nbsp porodzhuye topologiyu Yiyi sistemoyu okoliv ye x E V x V x V F displaystyle forall x in E mathcal V x V x V in Phi nbsp V a displaystyle mathcal V a nbsp ye nepustoyu oskilki sim ya otochen ye nepustoyu a displaystyle a nbsp nalezhit vsim mnozhinam iz V a displaystyle mathcal V a nbsp oskilki kozhne otochennya mistit diagonal Dovilna mnozhina sho mistit element V a displaystyle mathcal V a nbsp tezh ye elementom V a displaystyle mathcal V a nbsp oskilki dovilna mnozhina sho mistit otochennya tezh ye otochennyam Usi elementi A displaystyle A nbsp u V a displaystyle mathcal V a nbsp mistyat mnozhinu B displaystyle B nbsp z V a displaystyle mathcal V a nbsp taku sho A displaystyle A nbsp ye okolom usih tochok mnodini B displaystyle B nbsp Pripustimo sho A V a displaystyle A V a nbsp dlya deyakogo otochennya V displaystyle V nbsp i B W a displaystyle B W a nbsp dlya otochennya W displaystyle W nbsp dlya yakogo W W V displaystyle W circ W subset V nbsp Todi B A displaystyle B subset A nbsp oskilki W W W V displaystyle W subset W circ W subset V nbsp te sho W displaystyle W nbsp ye pidmnozhinoyu W W displaystyle W circ W nbsp viplivaye z togo sho W displaystyle W nbsp mistit diagonal dlya vsih b B displaystyle b in B nbsp i vsih x W b displaystyle x in W b nbsp a x W W V displaystyle a x in W circ W subset V nbsp dlya x A displaystyle x in A nbsp tomu A displaystyle A nbsp mistit W b displaystyle W b nbsp i tomu A V b displaystyle A in mathcal V b nbsp Peretin dvoh elementiv V a displaystyle mathcal V a nbsp ye elementom V a displaystyle mathcal V a nbsp oskilki peretin dvoh otochen ye otochennyam Topologiya z ciyeyu sistemoyu okoliv nazivayetsya topologiyeyu porodzhenoyu rivnomirnoyu strukturoyu F displaystyle Phi nbsp Yaksho topologiya porodzhuyetsya rivnomirnoyu strukturoyu to vona ye cilkom regulyarnoyu ne obov yazkovo gausdorfovoyu Osoblive znachennya maye vipadok koli cya topologiya ye gausdorfovoyu U terminah otochen ekvivalentnoyu umovoyu ye koli peretin vsih otochen ye rivnim diagonali mnozhini U terminah sistem rivnomirnih pokrittiv ekvivalentnoyu umovoyu ye te sho dlya dovilnih dvoh tochok mnozhini X displaystyle X nbsp isnuye rivnomirne pokrittya zhodna mnozhina yakogo ne mistit odnochasno dvi ci tochki Yaksho topologiya porodzhuyetsya rivnomirnoyu strukturoyu to naspravdi vsi ci umovi viplivayut z togo sho dana topologiya ye T 0 displaystyle T 0 nbsp topologiyeyu Rivnomirna struktura dlya yakoyi spravedlivimi ye vsi ci ekvivalentni vlastivosti nazivayetsya viddilnoyu Navpaki bud yaka cilkom regulyarna gausdorfova topologiya na X displaystyle X nbsp porodzhuyetsya deyakoyu viddilnoyu rivnomirnoyu strukturoyu Yak pravilo isnuye bagato riznih rivnomirnih struktur sho porodzhuyut odnakovu topologiyu na X displaystyle X nbsp Zokrema metrizovna topologiya mozhe porodzhuvatisya nemetrizovnoyu viddilnoyu rivnomirnoyu strukturoyu Topologiya kompaktnogo gausdorfovogo prostoru X displaystyle X nbsp zavzhdi porodzhuyetsya rivnomirnoyu strukturoyu Cya struktura ye yedinoyu i ye rivnoyu sistemi okoliv prostoru X X displaystyle X times X nbsp Rivnomirna neperervnist red Dokladnishe Rivnomirna neperervnistVidobrazhennya f X Y displaystyle f X to Y nbsp rivnomirnogo prostoru X displaystyle X nbsp v rivnomirnij prostir Y displaystyle Y nbsp nazivayetsya rivnomirno neperervnim yaksho dlya bud yakogo rivnomirnogo pokrittya P displaystyle P nbsp prostoru Y displaystyle Y nbsp sistema f 1 P f 1 U U P displaystyle f 1 P f 1 U U in P nbsp ye rivnomirnim pokrittyam X displaystyle X nbsp Ekvivalentno yaksho proobraz bud yakogo otochennya v Y displaystyle Y nbsp ye otochennyam v X displaystyle X nbsp Bud yake rivnomirno neperervne vidobrazhennya ye neperervnim vidnosno topologiyi porodzhenoyi rivnomirnimi strukturami na X displaystyle X nbsp i Y displaystyle Y nbsp Bud yake neperervne vidobrazhennya iz kompaktnogo gausdorfovogo prostoru yakij maye yedinu neperervnu strukturu sho uzgodzhuyetsya z topologiyeyu u rivnomirnij prostir ye rivnomirno neperervnim Yaksho rivnomirni strukturi na X displaystyle X nbsp i Y displaystyle Y nbsp porodzhuyutsya metrikami to rivnomirno neperervne vidobrazhennya f X Y displaystyle f X to Y nbsp ye rivnomirno neperervnim v klasichnomu sensi yak vidobrazhennya metrichnih prostoriv Nehaj M displaystyle M nbsp pidmnozhina rivnomirnogo prostoru X F displaystyle X Phi nbsp Sistema otochen F M M M V V F displaystyle Phi M M times M cap V V in Phi nbsp viznachaye rivnomirnu strukturu na M displaystyle M nbsp Para M F M displaystyle M Phi M nbsp nazivayetsya pidprostorom rivnomirnogo prostoru X F displaystyle X Phi nbsp Vidobrazhennya f X Y displaystyle f X to Y nbsp rivnomirnogo prostoru X F displaystyle X Phi nbsp v rivnomirnij prostir Y F displaystyle Y Phi nbsp nazivayetsya rivnomirnim vkladennyam yaksho f displaystyle f nbsp ye in yektivnim rivnomirno neperervnim i obernene vidobrazhennya f 1 f X F f X X F displaystyle f 1 fX Phi fX to X Phi nbsp takozh ye rivnomirno neperervnim Povnota red Rivnomirnij prostir X displaystyle X nbsp nazivayetsya povnim yaksho bud yakij filtr Koshi F displaystyle F nbsp v X displaystyle X nbsp tobto takij filtr sho dlya kozhnogo otochennya V PS displaystyle V in Psi nbsp isnuye mnozhina A F displaystyle A in F nbsp taka sho x y V displaystyle x y in V nbsp dlya vsih x y A displaystyle x y in A nbsp maye granicyu Metrizovnij rivnomirnij prostir ye povnim todi i tilki todi koli metrika sho porodzhuye jogo rivnomirnu strukturu ye povnoyu Bud yake rivnomirno neperervne vidobrazhennya iz shilnoyi pidmnozhini rivnomirnogo prostoru u povnij rivnomirnij prostir mozhe buti prodovzhene do rivnomirnogo vidobrazhennya na usomu prostori Bud yakij rivnomirnij prostir X PS displaystyle X Psi nbsp mozhe buti rivnomirno vkladenij yak vsyudi shilna pidmnozhina v yedinij z tochnistyu do rivnomirnogo izomorfizmu povnij rivnomirnij gausdorfiv prostir X PS displaystyle bar X bar Psi nbsp yakij nazivayetsya popovnennyam X PS displaystyle X Psi nbsp i dlya yakogo isnuye vkladennya i X X displaystyle i X to bar X nbsp take sho dlya bud yakogo rivnomirnogo vidobrazhennya f X Y displaystyle f X to Y nbsp mizh rivnomirnimi prostorami isnuye yedine rivnomirne vidobrazhennya g X Y displaystyle g bar X to Y nbsp take sho f g i displaystyle f g circ i nbsp Topologiya popovnennya rivnomirnogo prostoru X PS displaystyle X Psi nbsp ye kompaktnoyu todi i tilki todi koli neperervna struktura ye cilkom obmezhenoyu rivnomirnoyu strukturoyu tobto dlya bud yakogo rivnomirnogo pokrittya isnuye skinchenne rivnomirne pokrittya sho ye menshim shodo zirchastogo poryadku V comu vipadku popovnennya ye kompaktifikaciyeyu prostoru X displaystyle X nbsp i nazivayetsya rozshirennyam Samyuelya prostoru X displaystyle X nbsp shodo rivnomirnoyi strukturi PS displaystyle Psi nbsp Dlya bud yakoyi kompaktifikaciyi b X displaystyle bX nbsp prostoru X displaystyle X nbsp isnuye yedina cilkom obmezhena rivnomirna struktura na X displaystyle X nbsp rozshirennya Samyuelya shodo yakoyi zbigayetsya z b X displaystyle bX nbsp Dzherela red Burbaki N Zagalna topologiya Osnovni strukturi 3 e M Nauka 1968 S 276 Elementi matematiki ros Isbell John R 1964 Uniform Spaces Mathematical Surveys and Monographs American Mathematical Society ISBN 0 8218 1512 1 James I M 1990 Introduction to Uniform Spaces Cambridge UK Cambridge University Press ISBN 0 521 38620 9 James I M 1987 Topological and Uniform Spaces Undergraduate texts in mathematics Springer ISBN 0387964665 Andre Weil Sur les espaces a structure uniforme et sur la topologie generale Act Sci Ind 551 Paris 1937 Otrimano z https uk wikipedia org w index php title Rivnomirnij prostir amp oldid 36724996