www.wikidata.uk-ua.nina.az
Oznachennya RedaguvatiTopologichnij vektornij prostir nad topologichnim polem K displaystyle K nbsp vektornij prostir E displaystyle E nbsp nad K displaystyle K nbsp nadilenij topologiyeyu sho uzgodzhuyetsya zi strukturoyu vektornogo prostoru tobto zadovolnyaye nastupnim aksiomam vidobrazhennya x 1 x 2 x 1 x 2 E E E displaystyle x 1 x 2 to x 1 x 2 E times E to E nbsp ye neperervnim vidobrazhennya k x k x K E E displaystyle k x to kx K times E to E nbsp ye neperervnimV cih oznachennyah dobutki E E displaystyle E times E nbsp i K E displaystyle K times E nbsp nadileni dobutkami vidpovidnih topologij Cilkom analogichno mozhna viznachiti topologichnij livij i pravij vektornij prostori nad ne obov yazkovo komutativnim topologichnim tilom Dlya poznachennya topologichnogo vektornogo prostoru E displaystyle E nbsp z topologiyeyu t displaystyle tau nbsp inodi vikoristovuyetsya simvol E t displaystyle E tau nbsp Topologichni vektorni prostori E l displaystyle E l nbsp i E 2 displaystyle E 2 nbsp nad odnim i tim zhe topologichnim polem K displaystyle K nbsp nazivayutsya izomorfnimi yaksho isnuye neperervne linijne vzayemno odnoznachne vidobrazhennya E 1 displaystyle E 1 nbsp na E 2 displaystyle E 2 nbsp obernene do yakogo takozh ye neperervnim Rozmirnistyu topologichnogo vektornogo prostoru E t displaystyle E tau nbsp nazivayetsya rozmirnist vektornogo prostoru E displaystyle E nbsp Vlastivosti RedaguvatiNehaj E t displaystyle E tau nbsp topologichnij vektornij prostir nad topologichnim polem K displaystyle K nbsp Topologiya t displaystyle tau nbsp ye invariantnoyu shodo zsuviv tobto vidobrazhennya x x a displaystyle x to x a nbsp ye gomeomorfizmom na sebe dlya kozhnogo a E displaystyle a in E nbsp Yak naslidok topologiya t displaystyle tau nbsp odnoznachno viznachayetsya bazoyu okoliv dovilnoyi fiksovanoyi tochki zokrema nulya Dlya togo shob prostir E t displaystyle E tau nbsp buv gausdorfovim neobhidno i dostatno shob dlya bud yakoyi tochki x E x 0 displaystyle x in E x neq 0 nbsp isnuvav okil nulya sho ne mistit x displaystyle x nbsp Yaksho prostir E t displaystyle E tau nbsp ye gausdorfovim to vin ye cilkom regulyarnim V prostori E t displaystyle E tau nbsp isnuye yedina rivnomirna struktura sho ye invariantnoyu shodo zsuviv tobto dlya neyi vsi zsuvi ye rivnomirno neperervnimi vidobrazhennyami i asocijovana z neyu topologiya zbigayetsya z vihidnoyu topologiyeyu prostoru Mnozhina v topologichnomu vektornomu prostori nazivayetsya povnoyu yaksho vona ye povnoyu shodo ciyeyi rivnomirnoyi strukturi Topologichnij vektornij prostir E t displaystyle E tau nbsp ye povnim yaksho kozhen filtr Koshi v E t displaystyle E tau nbsp ye zbizhnim Dlya bud yakogo topologichnogo vektornogo prostoru E displaystyle E nbsp isnuye povnij topologichnij vektornij prostir nad tim zhe polem sho mistit E displaystyle E nbsp yak usyudi shilnu pidmnozhinu i indukuye na E displaystyle E nbsp vihidni linijnu strukturu i topologiyu Cej prostir nazivayetsya popovnennyam prostoru E displaystyle E nbsp Bud yakij gausdorfiv topologichnij vektornij prostir E displaystyle E nbsp maye gausdorfove popovnennya sho ye yedinim z tochnistyu do izomorfizmu sho zalishaye neruhomimi elementi prostoru E displaystyle E nbsp Nehaj teper K displaystyle K nbsp nediskretne normovane pole nadilene topologiyeyu yaka viznachayetsya normoyu Yaksho E displaystyle E nbsp vektornij prostir nad K displaystyle K nbsp to mnozhina Q E displaystyle Q subset E nbsp nazivayetsya zbalansovanoyu abo vrivnovazhenoyu yaksho k Q Q displaystyle kQ subset Q nbsp dlya vsih k K k 1 displaystyle k in K k leqslant 1 nbsp Yaksho A displaystyle A nbsp i B displaystyle B nbsp dvi pidmnozhini v E displaystyle E nbsp to kazhut sho A displaystyle A nbsp poglinaye B displaystyle B nbsp yaksho isnuye take dodatne chislo r displaystyle r nbsp sho k A B displaystyle kA supset B nbsp pri k K k gt r displaystyle k in K k gt r nbsp Pidmnozhina prostoru E displaystyle E nbsp nazivayetsya poglinayuchoyu abo radialnoyu yaksho vona poglinaye kozhnu odnotochkovu mnozhinu U vsyakomu topologichnomu vektornomu prostori nad K displaystyle K nbsp isnuye baza U displaystyle mathcal U nbsp zamknutih okoliv nulya z nastupnimi vlastivostyami dlya bud yakoyi mnozhini V U displaystyle V in mathcal U nbsp isnuye W U displaystyle W in mathcal U nbsp take sho W W V displaystyle W W subset V nbsp kozhna pidmnozhina V U displaystyle V in mathcal U nbsp ye zbalansovanoyu i poglinayuchoyu yaksho V U displaystyle V in mathcal U nbsp to i k V U displaystyle kV in mathcal U nbsp dlya vsyakogo k K k 0 displaystyle k in K k neq 0 nbsp Z inshogo boku nehaj t displaystyle tau nbsp topologiya v vektornomu prostori E displaystyle E nbsp nad K displaystyle K nbsp sho ye invariantnoyu shodo zsuviv i maye bazu okoliv nulya sho zadovolnyaye vlastivosti vlastivosti 1 i 2 vishe a takozh vlastivist Za isnuye take k K 0 lt k lt 1 displaystyle k in K 0 lt k lt 1 nbsp sho yaksho V U displaystyle V in mathcal U nbsp to i k V U displaystyle kV in mathcal U nbsp Todi E displaystyle E nbsp z topologiyeyu t displaystyle tau nbsp ye topologichnim vektornim prostorom nad K displaystyle K nbsp v tomu vipadku koli norma v poli K displaystyle K nbsp ye arhimedovoyu Za ye naslidkom inshih vimog nakladenih na E t displaystyle E tau nbsp Vsyakij bazis filtra U displaystyle mathcal U nbsp u vektornomu prostori E displaystyle E nbsp nad K displaystyle K nbsp sho zadovolnyaye vlastivostyami 1 2 Za ye fundamentalnoyu sistemoyu okoliv nulya ne obov yazkovo zamknutih deyakoyi odnoznachno viznachenoyi topologiyi t displaystyle tau nbsp v E displaystyle E nbsp sho uzgodzhuyetsya zi strukturoyu vektornogo prostoru v E displaystyle E nbsp U topologichnomu vektornomu prostori nad polem dijsnih chisel R displaystyle mathbb R nbsp abo nad polem kompleksnih chisel C displaystyle mathbb C nbsp jogo topologiya nazivayetsya lokalno opukloyu yaksho t displaystyle tau nbsp maye bazu okoliv nulya sho skladayetsya z opuklih mnozhin inodi v viznachennya lokalno opuklogo prostoru vklyuchayetsya she vimoga jogo gausdorfovosti Literatura RedaguvatiGrothendieck A 1973 Topological vector spaces New York Gordon and Breach Science Publishers ISBN 0 677 30020 4 Kothe G 1983 1969 Topological vector spaces I Grundlehren der mathematischen Wissenschaften 159 New York Springer Verlag ISBN 978 3 642 64990 5 Kothe G 1979 Topological vector spaces II Grundlehren der mathematischen Wissenschaften 237 New York Springer Verlag ISBN 978 1 4684 9411 2 Schaefer Helmut H Wolff M P 1999 1966 Topological vector spaces GTM 3 vid 2nd New York Springer Verlag ISBN 978 0 387 98726 2 Lang Serge 1972 Differential manifolds Reading Mass London Don Mills Ont Addison Wesley Publishing Co Inc ISBN 0 201 04166 9 Robertson A P W J Robertson 1964 Topological vector spaces Cambridge Tracts in Mathematics 53 Cambridge University Press Rudin Walter 1991 1973 Functional Analysis vid 2nd McGraw Hill ISBN 0 07 054236 8 MR 1157815 Treves F 1967 Topological Vector Spaces Distributions and Kernels Academic Press ISBN 0 486 45352 9 nbsp Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Cya stattya potrebuye dodatkovih posilan na dzherela dlya polipshennya yiyi perevirnosti Bud laska dopomozhit udoskonaliti cyu stattyu dodavshi posilannya na nadijni avtoritetni dzherela Zvernitsya na storinku obgovorennya za poyasnennyami ta dopomozhit vipraviti nedoliki Material bez dzherel mozhe buti piddano sumnivu ta vilucheno gruden 2018 Otrimano z https uk wikipedia org w index php title Topologichnij vektornij prostir amp oldid 38234501