www.wikidata.uk-ua.nina.az
Arifmetichni operaciyi u poli Galua z dvoh elementiv Dodavannya Mnozhennya 0 1 0 10 0 displaystyle 0 1 displaystyle 1 0 displaystyle 0 0 displaystyle 0 1 1 displaystyle 1 0 displaystyle 0 0 displaystyle 0 1 displaystyle 1 Skinchenne pole abo pole Galua na chest Evarista Galua pole yake skladayetsya zi skinchennoyi mnozhini elementiv Najmenshe pole Galua G F 2 F 2 displaystyle GF 2 mathbb F 2 mistit lishe dva elementi 0 displaystyle 0 ta 1 displaystyle 1 arifmetichni operaciyi nad yakimi povodyatsya majzhe yak zvichajno za vinyatkom pravila 1 1 0 displaystyle 1 1 0 Ce pole shiroko zastosuyetsya v diskretnij matematici komp yuternih naukah i teoriyi koduvannya Ideya zastosuvannya polya F 2 displaystyle mathbb F 2 polyagaye v tomu sho docilno rozglyadati poslidovnosti z nuliv j odinic yak elementi deyakoyi algebrayichnoyi strukturi vektornogo prostoru nad cim polem rozshirennya F 2 n displaystyle mathbb F 2 n kilcya mnogochleniv F 2 t displaystyle mathbb F 2 t tosho Algebrayichni operaciyi v cij strukturi privodyat do nizki vazhlivih konstrukcij v oznachenih galuzyah napriklad skinchenih proektivnih ploshin kodiv Rida Myulera i kodiv Goppa Zasnovani na teoriyi skinchenih poliv algoritmi perevirki na prostotu i faktorizaciyi cilih chisel vidigrayut vazhlivu rol u suchasnij prikladnij teoriyi chisel Dlya bud yakogo prostogo chisla p displaystyle p kilce zalishkiv mod p displaystyle operatorname mod p ce skinchene pole z p displaystyle p elementiv yake poznachayetsya G F p F p Z p Z displaystyle GF p mathbb F p mathbb Z p mathbb Z Elementi cogo polya mozhut buti predstavleni cilimi chislami 0 1 p 1 displaystyle 0 1 ldots p 1 yaki dodayutsya i mnozhatsya za modulem p displaystyle p Bud yake skinchene pole mistit p n displaystyle p n elementiv i odnoznachno zadayetsya svoyeyu harakteristikoyu p displaystyle p i stepenem n displaystyle n Zmist 1 Klasifikaciya 2 Vlastivosti 2 1 Ciklichnist multiplikativnoyi grupi 2 2 Inshi vlastivosti 3 Prikladi 3 1 Pole z dvoh elementiv 3 2 Pole z troh elementiv 3 3 Pole z chotiroh elementiv 3 4 Pole z dev yati elementiv 3 5 Multiplikativna grupa polya z 16 elementiv 4 Istoriya vivchennya 4 1 Vnesok Galua 4 2 Podalshij rozvitok 5 Div takozh 6 Primitki 7 DzherelaKlasifikaciya RedaguvatiBud yake skinchene pole K displaystyle mathbf K nbsp maye prostu harakteristiku p gt 0 displaystyle p gt 0 nbsp tomu vono mistit v sobi proste pidpole F p displaystyle mathbb F p nbsp Z aksiom polya viplivaye sho K displaystyle mathbf K nbsp yavlyaye soboyu skinchennovimirnij vektornij prostir nad F p displaystyle mathbb F p nbsp rozmirnosti n 1 displaystyle n geq 1 nbsp Dovilnij element K displaystyle mathbf K nbsp zadayetsya svoyimi n displaystyle n nbsp koordinatami vidnosno pevnogo bazisu yaki nalezhat do F p displaystyle mathbb F p nbsp Takim chinom pole K displaystyle mathbf K nbsp skladayetsya z q p n displaystyle q p n nbsp elementiv Viyavlyayetsya sho i navpaki dlya danih prostogo p displaystyle p nbsp i naturalnogo n 1 displaystyle n geq 1 nbsp isnuye yedine ne vrahovuyuchi avtomorfizmiv pole Galua z q p n displaystyle q p n nbsp elementiv yake maye harakteristiku p displaystyle p nbsp i poznachayetsya G F q F q F p n displaystyle GF q mathbb F q mathbb F p n nbsp Vlastivosti RedaguvatiCiklichnist multiplikativnoyi grupi Redaguvati Nenulovi elementi polya F q displaystyle mathbb F q nbsp utvoryuyut grupu shodo operaciyi mnozhennya yaka nazivayetsya multiplikativnoyu grupoyu polya i poznachayetsya F q displaystyle mathbb F q nbsp Cya grupa ye ciklichnoyu tobto vona maye porodzhuyuchij element a vsi inshi elementi otrimuyutsya pidnesennyam do stepenya porodzhuyuchogo 1 Porodzhuyuchij element F q displaystyle mathbb F q nbsp nazivayetsya takozh primitivnim elementom polya F q displaystyle mathbb F q nbsp Pole F q displaystyle mathbb F q nbsp mistit f q 1 displaystyle varphi q 1 nbsp primitivnih elementiv de f displaystyle varphi nbsp Funkciya Ejlera 2 Inshi vlastivosti Redaguvati Kozhen element polya F q displaystyle mathbb F q nbsp zadovolnyaye rivnosti a q a displaystyle a q a nbsp 3 Pole F p n displaystyle mathbb F p n nbsp mistit v sobi yak pidpole F p k displaystyle mathbb F p k nbsp todi i tilki todi koli k displaystyle k nbsp ye dilnikom n displaystyle n nbsp 4 Yaksho f F q x displaystyle f in mathbb F q x nbsp nezvidnij mnogochlen stepenya m displaystyle m nbsp to pole F q m displaystyle mathbb F q m nbsp mistit bud yakij jogo korin a displaystyle alpha nbsp prichomu mnozhina usih jogo koreniv maye viglyad a a q a q m 1 displaystyle alpha alpha q ldots alpha q m 1 nbsp Takim chinom F q m displaystyle mathbb F q m nbsp ye polem rozkladu mnogochlena f displaystyle f nbsp nad polem F q displaystyle mathbb F q nbsp 5 Dlya kozhnogo skinchennogo polya F q displaystyle mathbb F q nbsp ta naturalnogo chisla n displaystyle n nbsp dobutok usih normovanih nezvidnih nad F q displaystyle mathbb F q nbsp mnogochleniv stepin yakih dilit n displaystyle n nbsp dorivnyuye x q n x displaystyle x q n x nbsp Zokrema suma stepeniv takih mnogochleniv dorivnyuye q n displaystyle q n nbsp 6 Chislo N q n displaystyle N q n nbsp normovanih mnogochleniv stepenya n displaystyle n nbsp nezvidnih nad polem F q displaystyle mathbb F q nbsp viznachayetsya za formuloyu N q n 1 n d n m d q n d displaystyle N q n frac 1 n sum d n mu d q frac n d nbsp de m displaystyle mu nbsp Funkciya Mebiusa Ce tverdzhennya viplivaye z formuli q n d n d N q d displaystyle q n sum d n dN q d nbsp pislya zastosuvannya formuli obertannya Mebiusa 7 Prikladi RedaguvatiPole z dvoh elementiv Redaguvati Pole F 2 displaystyle mathbb F 2 nbsp skladayetsya z dvoh elementiv ale vono mozhe buti zadano riznimi sposobami zalezhno vid viboru elementiv i viznachennya operacij dodavannya ta mnozhennya na nih 8 Yak mnozhina z dvoh chisel 0 displaystyle 0 nbsp i 1 displaystyle 1 nbsp na yakij operaciyi dodavannya ta mnozhennya viznacheni yak dodavannya ta mnozhennya chisel z privedennyam rezultatu po modulyu 2 displaystyle 2 nbsp 0 10 0 11 1 0 0 10 0 01 0 1Yak mnozhina z dvoh logichnih ob yektiv Hibnist F i Istina T na yakij operaciyi dodavannya ta mnozhennya viznacheno yak bulevi operaciyi viklyuchna diz yunkciya i kon yunkciya vidpovidno F TF F TT T F F TF F FT F TCi polya izomorfni tobto faktichno ce dva rizni sposobi zadannya odnogo j togo zh polya Pole z troh elementiv Redaguvati Pole F 3 0 1 2 displaystyle mathbb F 3 0 1 2 nbsp Dodavannya ta mnozhennya viznacheni yak dodavannya ta mnozhennya chisel po modulyu 3 displaystyle 3 nbsp Tablici operacij F 3 displaystyle mathbb F 3 nbsp mayut viglyad 0 1 20 0 1 21 1 2 02 2 0 1 0 1 20 0 0 01 0 1 22 0 2 1Pole z chotiroh elementiv Redaguvati Pole F 4 displaystyle mathbb F 4 nbsp mozhna zadati yak mnozhinu 0 1 a a 1 displaystyle 0 1 alpha alpha 1 nbsp de a displaystyle alpha nbsp korin mnogochlena f x x 2 x 1 displaystyle f x x 2 x 1 nbsp tobto a 2 a 1 a 1 displaystyle alpha 2 alpha 1 alpha 1 nbsp Tablici operacij F 4 displaystyle mathbb F 4 nbsp mayut viglyad 9 0 1 a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp 0 0 1 a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp 1 1 0 a 1 displaystyle alpha 1 nbsp a displaystyle alpha nbsp a displaystyle alpha nbsp a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp 0 1a 1 displaystyle alpha 1 nbsp a 1 displaystyle alpha 1 nbsp a displaystyle alpha nbsp 1 0 0 1 a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp 0 0 0 0 01 0 1 a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp a displaystyle alpha nbsp 0 a displaystyle alpha nbsp a 1 displaystyle alpha 1 nbsp 1a 1 displaystyle alpha 1 nbsp 0 a 1 displaystyle alpha 1 nbsp 1 a displaystyle alpha nbsp Pole z dev yati elementiv Redaguvati Shob zadati pole F 9 G F 3 2 displaystyle mathbb F 9 mathrm GF 3 2 nbsp dostatno znajti normovanij mnogochlen stepenya 2 displaystyle 2 nbsp nezvidnij nad F 3 displaystyle mathbb F 3 nbsp Takimi mnogochlenami ye x 2 1 displaystyle x 2 1 nbsp x 2 x 2 displaystyle x 2 x 2 nbsp x 2 2 x 2 displaystyle x 2 2x 2 nbsp Dlya x 2 1 displaystyle x 2 1 nbsp polem ye F 9 Z 3 x x 2 1 displaystyle mathbb F 9 mathbb Z 3 x x 2 1 nbsp yaksho zamist x 2 1 displaystyle x 2 1 nbsp vzyati inshij mnogochlen to bude nove pole izomorfne staromu V navedenih nizhche tablicya simvol i displaystyle i nbsp oznachaye klas ekvivalentnosti mnogochlena x displaystyle x nbsp u faktor kilci Z 3 x x 2 1 displaystyle mathbb Z 3 x x 2 1 nbsp yakij zadovolnyaye rivnyannyu i 2 1 0 displaystyle i 2 1 0 nbsp Tablicya dodavannya v F 9 displaystyle mathbb F 9 nbsp viznachayetsya vihodyachi z vidnoshennya 1 1 1 0 displaystyle 1 1 1 0 nbsp 0 1 2 i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 0 0 1 2 i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 1 1 2 0 i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp i displaystyle i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 2 2 0 1 i 2 displaystyle i 2 nbsp i displaystyle i nbsp i 1 displaystyle i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp i displaystyle i nbsp i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 0 1 2i 1 displaystyle i 1 nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp i displaystyle i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 1 2 0i 2 displaystyle i 2 nbsp i 2 displaystyle i 2 nbsp i displaystyle i nbsp i 1 displaystyle i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 0 12 i displaystyle 2i nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 0 1 2 i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 1 2 0 i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp i displaystyle i nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 0 1 i 2 displaystyle i 2 nbsp i displaystyle i nbsp i 1 displaystyle i 1 nbsp Tablicya mnozhennya v F 9 displaystyle mathbb F 9 nbsp viznachayetsya z spivvidnoshennya i 2 1 displaystyle i 2 1 nbsp 0 1 2 i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 0 0 0 0 0 0 0 0 0 01 0 1 2 i displaystyle i nbsp i 1 displaystyle i 1 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 2 0 2 1 2 i displaystyle 2i nbsp 2 i 2 displaystyle 2i 2 nbsp 2 i 1 displaystyle 2i 1 nbsp i displaystyle i nbsp i 2 displaystyle i 2 nbsp i 1 displaystyle i 1 nbsp i displaystyle i nbsp 0 i displaystyle i nbsp 2 i displaystyle 2i nbsp 2 i 2 displaystyle i 2 nbsp 2 i 2 displaystyle 2i 2 nbsp 1 i 1 displaystyle i 1 nbsp 2 i 1 displaystyle 2i 1 nbsp i 1 displaystyle i 1 nbsp 0 i 1 displaystyle i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp i 2 displaystyle i 2 nbsp 2 i displaystyle 2i nbsp 1 2 i 1 displaystyle 2i 1 nbsp 2 i displaystyle i nbsp i 2 displaystyle i 2 nbsp 0 i 2 displaystyle i 2 nbsp 2 i 1 displaystyle 2i 1 nbsp 2 i 2 displaystyle 2i 2 nbsp 1 i displaystyle i nbsp i 1 displaystyle i 1 nbsp 2 i displaystyle 2i nbsp 22 i displaystyle 2i nbsp 0 2 i displaystyle 2i nbsp i displaystyle i nbsp 1 2 i 1 displaystyle 2i 1 nbsp i 1 displaystyle i 1 nbsp 2 2 i 2 displaystyle 2i 2 nbsp i 2 displaystyle i 2 nbsp 2 i 1 displaystyle 2i 1 nbsp 0 2 i 1 displaystyle 2i 1 nbsp i 2 displaystyle i 2 nbsp i 1 displaystyle i 1 nbsp 2 2 i displaystyle 2i nbsp 2 i 2 displaystyle 2i 2 nbsp i displaystyle i nbsp 12 i 2 displaystyle 2i 2 nbsp 0 2 i 2 displaystyle 2i 2 nbsp i 1 displaystyle i 1 nbsp 2 i 1 displaystyle 2i 1 nbsp i displaystyle i nbsp 2 i 2 displaystyle i 2 nbsp 1 2 i displaystyle 2i nbsp Mozhna pereviriti sho element i 1 displaystyle i 1 nbsp maye poryadok 8 displaystyle 8 nbsp i ye primitivnim Element i displaystyle i nbsp ne ye primitivnim tak yak i 4 1 displaystyle i 4 1 nbsp inshimi slovami mnogochlen x 2 1 F 3 x displaystyle x 2 1 in mathbb F 3 x nbsp ne ye primitivnim en 9 Multiplikativna grupa polya z 16 elementiv Redaguvati Koli pole F 16 G F 2 4 displaystyle mathbb F 16 mathrm GF 2 4 nbsp zadayetsya z dopomogoyu neprivodimogo mnogochlena x 4 x 1 displaystyle x 4 x 1 nbsp elementi rozshirennya zadayutsya naborami koeficiyentiv mnogochlena yakij otrimuyetsya v zalishku pri dilenni na x 4 x 1 displaystyle x 4 x 1 nbsp zapisanimi v poryadku zrostannya stepeniv Multiplikativna grupa porodzhuyetsya elementom a x displaystyle alpha x nbsp yakij zapisuyetsya yak 0 1 0 0 10 Mnogochlen Stepin a displaystyle alpha nbsp 1 x x 2 x 3 displaystyle 1 x x 2 x 3 nbsp a displaystyle alpha nbsp 0 1 0 0 a 2 displaystyle alpha 2 nbsp 0 0 1 0 a 3 displaystyle alpha 3 nbsp 0 0 0 1 1 a displaystyle 1 alpha nbsp a 4 displaystyle alpha 4 nbsp 1 1 0 0 a a 2 displaystyle alpha alpha 2 nbsp a 5 displaystyle alpha 5 nbsp 0 1 1 0 a 2 a 3 displaystyle alpha 2 alpha 3 nbsp a 6 displaystyle alpha 6 nbsp 0 0 1 1 a 3 a 1 a 3 a 4 displaystyle alpha 3 alpha 1 alpha 3 alpha 4 nbsp a 7 displaystyle alpha 7 nbsp 1 1 0 1 1 a 2 a 1 a 2 a displaystyle 1 alpha 2 alpha 1 alpha 2 alpha nbsp a 8 displaystyle alpha 8 nbsp 1 0 1 0 a a 3 displaystyle alpha alpha 3 nbsp a 9 displaystyle alpha 9 nbsp 0 1 0 1 a 2 1 a a 2 a 4 displaystyle alpha 2 1 alpha alpha 2 alpha 4 nbsp a 10 displaystyle alpha 10 nbsp 1 1 1 0 a a 2 a 3 displaystyle alpha alpha 2 alpha 3 nbsp a 11 displaystyle alpha 11 nbsp 0 1 1 1 1 a a 2 a 3 a 2 a 3 a 4 displaystyle 1 alpha alpha 2 alpha 3 alpha 2 alpha 3 alpha 4 nbsp a 12 displaystyle alpha 12 nbsp 1 1 1 1 1 a 2 a 3 a a 2 a 3 a 4 displaystyle 1 alpha 2 alpha 3 alpha alpha 2 alpha 3 alpha 4 nbsp a 13 displaystyle alpha 13 nbsp 1 0 1 1 1 a 3 a a 3 a 4 displaystyle 1 alpha 3 alpha alpha 3 alpha 4 nbsp a 14 displaystyle alpha 14 nbsp 1 0 0 1 1 a a 4 displaystyle 1 alpha alpha 4 nbsp a 15 displaystyle alpha 15 nbsp 1 0 0 0 Istoriya vivchennya RedaguvatiPochatki teoriyi skinchennih poliv berut pochatok iz XVII i XVIII stolit Nad ciyeyu temoyu pracyuvali taki vcheni yak P yer Ferma Leonard Ejler Zhozef Luyi Lagranzh ta Adriyen Mari Lezhandr yakih mozhna vvazhati zasnovnikami teoriyi skinchennih poliv prostogo poryadku Odnak velikij interes predstavlyaye zagalna teoriya skinchennih poliv sho bere svij pochatok z robit Gausa ta Galua 11 Do deyakogo chasu cya teoriya znahodila zastosuvannya lishe v algebri ta teoriyi chisel prote zgodom buli znajdeni novi tochki dotiku z algebrichnoyu geometriyeyu kombinatorikoyu ta teoriyeyu koduvannya 12 Vnesok Galua Redaguvati nbsp Evarist GaluaU 1830 roci visimnadcyatirichnij Evarist Galua opublikuvav pracyu 13 yaka poklala osnovu zagalnoyi teoriyi skinchennih poliv U cij praci Galua u zv yazku z doslidzhennyami perestanovok ta algebrayichnih rivnyan 14 zaprovadiv uyavnij korin porivnyannya F x 0 mod p displaystyle F x equiv 0 pmod p nbsp de F x displaystyle F x nbsp dovilnij mnogochlen stepenya n displaystyle nu nbsp nezvidnij po modulyu p displaystyle p nbsp Pislya cogo rozglyadayetsya zagalnij viraz A a 0 a 1 i a 2 i 2 a n 1 i n 1 displaystyle A a 0 a 1 i a 2 i 2 a nu 1 i nu 1 nbsp de a 0 a 1 a n 1 displaystyle a 0 a 1 a nu 1 nbsp deyaki cili chisla po modulyu p displaystyle p nbsp Yaksho nadavati cim chislam rizni znachennya viraz A displaystyle A nbsp nabuvatime p n displaystyle p nu nbsp znachen Dali Galua pokazav sho ci znachennya utvoryuyut pole j multiplikativna grupa cogo polya ye ciklichnoyu Takim chinom iz ciyeyi praci pochalis fundamentalni doslidzhennya zagalnoyi teoriyi skinchennih poliv Na vidminu vid poperednikiv yaki doslidzhuvali lishe polya F p displaystyle mathbb F p nbsp Galua vivchav uzhe polya F p n displaystyle mathbb F p n nbsp yaki nazvali polyami Galua na jogo chest 15 Naspravdi pershu pracyu v cij galuzi napisav Gauss priblizno 1797 roku odnak za jogo zhittya doslidzhennya ne bulo vidano Imovirno jogo proignoruvav redaktor tvoriv Gaussa tomu opublikuvali cyu pracyu tilki v posmertnomu vidanni 1863 roku 16 Podalshij rozvitok Redaguvati U 1893 roci matematik Eliakim Mur en doviv teoremu pro klasifikaciyu skinchennih poliv yaka stverdzhuye sho bud yake skinchenne pole ye polem Galua tobto bud yake pole z p n displaystyle p n nbsp elementiv izomorfne polyu klasiv zalishkiv mnogochleniv z koeficiyentami z F p displaystyle mathbb F p nbsp po modulyu nezvidnogo mnogochlena stepenya n displaystyle n nbsp 17 Togo zh roku pershu sprobu aksiomatichnogo pidhodu do teoriyi skinchennih poliv zrobiv Genrih Martin Veber en yakij namagavsya poyednati v svoyij praci viznachennya yaki vinikli v riznih rozdilah matematiki zokrema i viznachennya skinchennogo polya 18 Dali u 1905 roci Dzhozef Vedderbern en doviv teoremu Vedderberna pro te sho bud yake skinchenne tilo komutativne tobto ye polem Suchasne aksiomatichne viznachennya polya zi skinchennimi polyami yak okremim vipadkom nalezhit Ernstu Stejnicu en i vikladeno v jogo praci 1910 roku 19 Div takozh RedaguvatiPobudova PeliPrimitki Redaguvati Yu I Zhuravlev Yu A Flerov M N Vyalyj Diskretnyj analiz Osnovy vysshej algebry M MZ Press 2007 S 151 Lidl Niderrajter 1998 s 69 70 Lidl Niderrajter 1998 s 66 Lidl Niderrajter 1998 s 68 Lidl Niderrajter 1998 s 71 Lidl Niderrajter 1998 s 119 Lidl Niderrajter 1998 s 121 Gabidulin E M Ksheveckij A S Kolybelnikov A I Vladimirov S M Zashita informacii Uchebnoe posobie Versiya ot 22 noyabrya 2015 goda S 249 a b Mullen Gary L Panario Daniel Handbook of Finite Fields CRC Press 2013 ISBN 978 1 4398 7378 6 Yu I Zhuravlev Yu A Flerov M N Vyalyj Diskretnyj analiz Osnovy vysshej algebry M MZ Press 2007 S 152 Lidl Niderrajter 1998 s 10 Lidl Niderrajter 1998 s 5 Evariste Galois 1830 Sur la theorie des nombres Bulletin des sciences mathematiques de M Ferussac 13 pp 428 435 1830 Burbaki N Ocherki po istorii matematiki M IL 1963 S 102 Israel Kleiner A History of Abstract Algebra Birkhauser 2007 S 70 ISBN 978 0 8176 4684 4 G Frei The Unpublished Section Eight On the Way to Function Fields over a Finite Field Goldstein Schappacher Schwermer 2007 S 159 198 Moore Eliakim Hastings Arhivovana kopiya Chicago Congr Papers 1896 S 208 242 Arhivovano z dzherela 19 listopada 2015 Procitovano 2016 05 26 H Weber Die allgemeinen Grundlagen der Galois schen Gleichungstheorie Mathematische Annalen vol 43 1893 p 521 549 Ernst Steinitz Algebraische Theorie der Korper Journal fur die reine und angewandte Mathematik vol 137 1910 p 167 309 ISSN 0075 4102 Dzherela RedaguvatiVinberg E B Kurs algebri 4 e izd Moskva MCNMO 2011 592 s ISBN 978 5 94057 685 3 ros Dzhozef Rotman en An Introduction to the Theory of Groups 4th Springer Graduate Texts in Mathematics 1994 532 s ISBN 978 0387942858 angl Lidl R Niderrajter G Konechnye polya V 2 h tt M Mir 1998 430 s ISBN 5 03 000065 8 Zhuravlev Yu I Flerov Yu A Vyalyj M N Diskretnyj analiz Osnovy vysshej algebry 2 e izd M MZ Press 2007 224 s 1000 prim ISBN 5 94073 101 5 Ernst Steinitz Algebraische Theorie der Korper Journal fur die reine und angewandte Mathematik 1910 T 137 S 167 309 W Diffie and M E Hellman New Directions in Cryptography 1976 Israel Kleiner A History of Abstract Algebra Birkhauser 2007 ISBN 978 0 8176 4684 4 Otrimano z https uk wikipedia org w index php title Pole Galua amp oldid 40564768