www.wikidata.uk-ua.nina.az
Chislo Pellya cile chislo sho ye znamennikom u neskinchennij poslidovnosti lancyugovih drobiv dlya kvadratnogo korenya z dvoh Cya poslidovnist nablizhen pochinayetsya drobami 1 1 3 2 7 5 17 12 41 29 displaystyle 1 1 3 2 7 5 17 12 41 29 dots tobto pershi chisla Pellya 1 2 5 12 i 29 Chiselniki tiyeyi samoyi poslidovnosti nablizhen ye polovinami suputnih chisel Pellya abo chislami Pellya Lyuka neskinchenoyi poslidovnosti sho pochinayetsya z 2 6 14 34 i 82 Obidvi poslidovnosti chisla Pellya i suputni chisla Pellya mozhut buti obchisleni za dopomogoyu rekurentnoyi formuli shozhoyi na formuli dlya chisel Fibonachchi i obidvi poslidovnosti chisel zrostayut eksponencialno proporcijno stepenyu sribnogo peretinu 1 2 displaystyle 1 sqrt 2 Krim vikoristannya v lancyugovomu drobu nablizhen do kvadratnogo korenya z dvoh chisla Pellya mozhna zastosuvati dlya poshuku kvadratnih trikutnih chisel i dlya virishennya deyakih kombinatornih zadach pererahuvannya 1 Poslidovnist chisel Pellya vidoma z davnih chasiv hocha Leonard Ejler pomilkovo pripisav yih vidkrittya Dzhonu Pellyu yak i rivnyannya Pellya Chisla Pellya Lyuka nazvani na chest Eduarda Lyuka yakij vivchav ci poslidovnosti I chisla Pellya i suputni chisla Pellya ye okremimi vipadkami poslidovnostej Lyuka Zmist 1 Chisla Pellya 2 Nablizhennya do kvadratnogo korenya z dvoh 3 Prosti j kvadrati 4 Pifagorovi trijki 5 Chisla Pellya Lyuka 6 Obchislennya ta zv yazki 6 1 Viznachennya 6 2 Nablizhennya 6 3 H2 2P2 1 6 4 Kvadratni trikutni chisla 6 5 Tripleti Pifagora 7 Div takozh 8 Primitki 9 PosilannyaChisla Pellya RedaguvatiChisla Pellya zadayutsya linijnim rekurentnim spivvidnoshennyam P n 0 n 0 1 n 1 2 P n 1 P n 2 n gt 1 displaystyle P n begin cases 0 n 0 1 n 1 2P n 1 P n 2 n gt 1 end cases nbsp i ye okremim vipadkom poslidovnosti Lyuka Pershi kilka chisel Pellya 8 1 2 5 12 29 70 169 408 985 2378 poslidovnist A000129 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS Chisla Pellya mozhna viraziti formuloyu P n 1 2 n 1 2 n 2 2 displaystyle P n frac 1 sqrt 2 n 1 sqrt 2 n 2 sqrt 2 nbsp Dlya velikih znachen n chlen 1 2 n displaystyle scriptstyle 1 sqrt 2 n nbsp dominuye v comu virazi tak sho chisla Pellya priblizno proporcijni stupeni sribnogo peretinu 1 2 displaystyle scriptstyle 1 sqrt 2 nbsp takozh yak shvidkist rostu chisel Fibonachchi dorivnyuye stupeni zolotogo peretinu Mozhlivo i tretye viznachennya u viglyadi matrichnoyi formuli P n 1 P n P n P n 1 2 1 1 0 n displaystyle begin pmatrix P n 1 amp P n P n amp P n 1 end pmatrix begin pmatrix 2 amp 1 1 amp 0 end pmatrix n nbsp Bagato totozhnostej mozhut buti dovedeni z cih viznachen napriklad totozhnist analogichne totozhnosti Kassini ru dlya chisel Fibonachchi P n 1 P n 1 P n 2 1 n displaystyle P n 1 P n 1 P n 2 1 n nbsp yak negajnij naslidok matrichnoyi formuli pidstavlyayuchi viznachniki matric livoruch i pravoruch 2 Nablizhennya do kvadratnogo korenya z dvoh Redaguvati nbsp Racionalne nablizhennya do pravilnih vosmikutnikiv iz koordinatami z chisel PellyaChisla Pellya vinikli istorichno z racionalnih nablizhen do kvadratnogo korenya z dvoh Yaksho dva velikih cilih x i y dayut rishennya rivnyannya Pellya x 2 2 y 2 1 displaystyle displaystyle x 2 2y 2 pm 1 nbsp to yih vidnoshennya x y displaystyle tfrac x y nbsp daye blizke nablizhennya do 2 displaystyle scriptstyle sqrt 2 nbsp Poslidovnist nablizhen cogo vidu 1 3 2 7 5 17 12 41 29 99 70 displaystyle 1 frac 3 2 frac 7 5 frac 17 12 frac 41 29 frac 99 70 dots nbsp de znamennik kozhnogo drobu chislo Pellya a chiselnik dorivnyuye sumi chisla Pellya i jogo poperednika v poslidovnosti Takim chinom nablizhennya mayut viglyad P n 1 P n P n displaystyle tfrac P n 1 P n P n nbsp Nablizhennya 2 577 408 displaystyle sqrt 2 approx frac 577 408 nbsp cogo tipu bulo vidomo matematikam Indiyi v tretomu chetvertomu stolitti do nashoyi eri 3 Grecki matematiki p yatogo stolittya do nashoyi eri takozh znali pro ce nablizhennya 4 Platon posilayetsya na chiselniki yak racionalni diametri 5 U drugomu stolitti nashoyi eri Teon Smirnskij ru vikoristovuvav termini storona i diametr dlya opisu znamennika i chiselnika ciyeyi poslidovnosti 6 Ci nablizhennya mozhut buti otrimani z lancyugovogo drobu 2 displaystyle scriptstyle sqrt 2 nbsp 2 1 1 2 1 2 1 2 1 2 1 2 displaystyle sqrt 2 1 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 ddots nbsp Skinchena chastina lancyugovogo drobu daye aproksimaciyu u viglyadi chisel Pellya Napriklad 577 408 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 displaystyle frac 577 408 1 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 cfrac 1 2 nbsp Yak pisav Knut 1994 fakt aproksimaciyi chislami Pellya 2 displaystyle scriptstyle sqrt 2 nbsp dozvolyaye vikoristovuvati yih dlya racionalnogo nablizhennya do pravilnogo vosmikutnika z koordinatami vershin P i P i 1 displaystyle pm P i pm P i 1 nbsp i P i 1 P i displaystyle pm P i 1 pm P i nbsp Usi vershini cogo vosmikutnika odnakovo viddaleni vid centru i formuyut majzhe odnakovi kuti Vodnochas tochki P i P i 1 0 displaystyle pm P i P i 1 0 nbsp 0 P i P i 1 displaystyle 0 pm P i P i 1 nbsp i P i P i displaystyle pm P i pm P i nbsp formuyut vosmikutnik u yakogo vershini majzhe odnakovo viddaleni vid centru ta mayut odnakovi kuti Prosti j kvadrati RedaguvatiProstim chislom Pellya nazivayetsya chislo Pellya sho ye takozh prostim Kilka pershih prostih chisel Pellya 2 5 29 5741 poslidovnist A086383 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS Yak i u vipadku z chislami Fibonachchi chislo Pellya P n displaystyle P n nbsp mozhe buti prostim tilki yaksho n proste Ye vsogo tri chisla Pellya yaki ye kvadratami kubami ta inshimi vishimi stupenyami ce 0 1 i 169 132 7 Popri te sho sered chisel Pellya nastilki malo kvadrativ ta inshih stepeniv voni mayut blizkij zv yazok iz kvadratnimi trikutnimi chislami 8 Ci chisla vinikayut iz nastupnoyi totozhnosti P k 1 P k P k 2 P k 1 P k 2 P k 1 P k 2 1 k 2 displaystyle bigl P k 1 P k cdot P k bigr 2 frac P k 1 P k 2 cdot left P k 1 P k 2 1 k right 2 nbsp Liva chastina ciyeyi totozhnosti daye kvadratne chislo u toj chas yak prava chastina daye trikutne chislo tak sho v rezultati otrimayemo kvadratne trikutne chislo Santana Santana i Diac Barrero Diaz Barrero 2006 doveli inshu totozhnist sho pov yazuye chisla Pellya z kvadratami Voni pokazali sho suma chisel Pellya do P 4 n 1 displaystyle P 4n 1 nbsp zavzhdi ye kvadratom i 0 4 n 1 P i r 0 n 2 r 2 n 1 2 r 2 P 2 n P 2 n 1 2 displaystyle sum i 0 4n 1 P i left sum r 0 n 2 r 2n 1 choose 2r right 2 P 2n P 2n 1 2 nbsp Napriklad suma chisel Pellya do P 5 displaystyle P 5 nbsp 0 1 2 5 12 29 49 displaystyle 0 1 2 5 12 29 49 nbsp ye kvadratom chisla P 2 P 3 2 5 7 displaystyle P 2 P 3 2 5 7 nbsp Chisla P 2 n P 2 n 1 displaystyle P 2n P 2n 1 nbsp yaki utvoryuyut kvadratni koreni takih sum 1 7 41 239 1393 8119 47321 poslidovnist A002315 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS vidomi yak prosti chisla Nyumena Shenksa Vilyamsa ru Pifagorovi trijki Redaguvati nbsp Pryamokutni trikutniki z majzhe rivnimi katetami i cilochiselnimi koordinatami porodzheni chislami Pellya Yaksho pryamokutnij trikutnik maye storoni a b c po teoremi Pifagora a2 b2 c2 to a b c vidomi yak pifagorovi trijki Martin Martin 1875 pisav sho chisla Pellya mozhna zastosuvati dlya formuvannya pifagorovih trijok v yakih a i b vidriznyayutsya na odinicyu sho vidpovidaye majzhe rivnobedrenomu pryamokutnomu trikutniku Kozhna taka trijka maye viglyad 2 P n P n 1 P n 1 2 P n 2 P n 1 2 P n 2 P 2 n 1 displaystyle 2P n P n 1 P n 1 2 P n 2 P n 1 2 P n 2 P 2n 1 nbsp Poslidovnist pifagorovih trijok otrimana takim sposobom 4 3 5 20 21 29 120 119 169 696 697 985 Chisla Pellya Lyuka RedaguvatiSuputni chisla Pellya abo chisla Pellya Lyuka viznachayutsya linijnim rekurentnim spivvidnoshennyam Q n 2 n 0 2 n 1 2 Q n 1 Q n 2 n gt 1 displaystyle Q n begin cases 2 n 0 2 n 1 2Q n 1 Q n 2 n gt 1 end cases nbsp Tobto pershi dva chisla v poslidovnosti rivni 2 a vsi inshi formuyutsya yak suma podvoyenogo poperednogo chisla Pellya Lyuka ta poperednogo do nogo abo sho ekvivalentno yak suma nastupnogo ta poperednogo chisel Pellya Tak suputnim dlya 82 ye chislo 29 i 82 2 34 14 70 12 Suputni chisla Pellya utvoryuyut poslidovnist 2 2 6 14 34 82 198 478 poslidovnist A002203 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS Suputni chisla Pellya mozhna podati formuloyu Q n 1 2 n 1 2 n displaystyle Q n 1 sqrt 2 n 1 sqrt 2 n nbsp Usi ci chisla parni kozhne z nih ye podvoyenim chiselnikom u nablizhenni racionalnimi chislami do 2 displaystyle scriptstyle sqrt 2 nbsp Obchislennya ta zv yazki RedaguvatiNastupna tablicya daye dekilka pershih stepeniv sribnogo peretinu d d S 1 2 displaystyle delta delta S 1 sqrt 2 nbsp i pov yazanogo z nim d 1 2 displaystyle bar delta 1 sqrt 2 nbsp n displaystyle n nbsp 1 2 n displaystyle 1 sqrt 2 n nbsp 1 2 n displaystyle 1 sqrt 2 n nbsp 0 1 0 2 1 0 displaystyle 1 0 sqrt 2 1 0 nbsp 1 0 2 1 0 displaystyle 1 0 sqrt 2 1 0 nbsp 1 1 1 2 2 41421 displaystyle 1 1 sqrt 2 2 41421 ldots nbsp 1 1 2 0 41421 displaystyle 1 1 sqrt 2 0 41421 ldots nbsp 2 3 2 2 5 82842 displaystyle 3 2 sqrt 2 5 82842 ldots nbsp 3 2 2 0 17157 displaystyle 3 2 sqrt 2 0 17157 ldots nbsp 3 7 5 2 14 07106 displaystyle 7 5 sqrt 2 14 07106 ldots nbsp 7 5 2 0 07106 displaystyle 7 5 sqrt 2 0 07106 ldots nbsp 4 17 12 2 33 97056 displaystyle 17 12 sqrt 2 33 97056 ldots nbsp 17 12 2 0 02943 displaystyle 17 12 sqrt 2 0 02943 ldots nbsp 5 41 29 2 82 01219 displaystyle 41 29 sqrt 2 82 01219 ldots nbsp 41 29 2 0 01219 displaystyle 41 29 sqrt 2 0 01219 ldots nbsp 6 99 70 2 197 9949 displaystyle 99 70 sqrt 2 197 9949 ldots nbsp 99 70 2 0 0050 displaystyle 99 70 sqrt 2 0 0050 ldots nbsp 7 239 169 2 478 00209 displaystyle 239 169 sqrt 2 478 00209 ldots nbsp 239 169 2 0 00209 displaystyle 239 169 sqrt 2 0 00209 ldots nbsp 8 577 408 2 1153 99913 displaystyle 577 408 sqrt 2 1153 99913 ldots nbsp 577 408 2 0 00086 displaystyle 577 408 sqrt 2 0 00086 ldots nbsp 9 1393 985 2 2786 00035 displaystyle 1393 985 sqrt 2 2786 00035 ldots nbsp 1393 985 2 0 00035 displaystyle 1393 985 sqrt 2 0 00035 ldots nbsp 10 3363 2378 2 6725 99985 displaystyle 3363 2378 sqrt 2 6725 99985 ldots nbsp 3363 2378 2 0 00014 displaystyle 3363 2378 sqrt 2 0 00014 ldots nbsp 11 8119 5741 2 16238 00006 displaystyle 8119 5741 sqrt 2 16238 00006 ldots nbsp 8119 5741 2 0 00006 displaystyle 8119 5741 sqrt 2 0 00006 ldots nbsp 12 19601 13860 2 39201 99997 displaystyle 19601 13860 sqrt 2 39201 99997 ldots nbsp 19601 13860 2 0 00002 displaystyle 19601 13860 sqrt 2 0 00002 ldots nbsp Koeficiyenti yavlyayut soboyu polovini suputnih chisel Pellya H n displaystyle H n nbsp i chisla Pellya P n displaystyle P n nbsp ye nevid yemnimi rozv yazkami rivnyannya H 2 2 P 2 1 displaystyle H 2 2P 2 pm 1 nbsp Kvadratne trikutne chislo ce chislo N t t 1 2 s 2 displaystyle N frac t t 1 2 s 2 nbsp yake ye yak t displaystyle t nbsp trikutnim chislom tak i s displaystyle s nbsp kvadratnim Majzhe rivnobedreni pifagorovi trijki ye cilimi rozv yazkami a 2 b 2 c 2 displaystyle a 2 b 2 c 2 nbsp de a 1 b displaystyle a 1 b nbsp Nastupna tablicya pokazuye rozkladannya neparnih H n displaystyle H n nbsp na dvi majzhe odnakovi polovinki sho daye kvadratne trikutne chislo koli n parne i majzhe rivnobedrenu pifagorovu trijku koli n neparne n displaystyle n nbsp H n displaystyle H n nbsp P n displaystyle P n nbsp t t 1 s a b c0 1 0 0 0 01 1 1 0 1 12 3 2 1 2 13 7 5 3 4 54 17 12 8 9 65 41 29 20 21 296 99 70 49 50 357 239 169 119 120 1698 577 408 288 289 2049 1393 985 696 697 98510 3363 2378 1681 1682 118911 8119 5741 4059 4060 574112 19601 13860 9800 9801 6930Viznachennya Redaguvati Polovini suputnih chisel Pellya H n displaystyle H n nbsp i chisla Pellya P n displaystyle P n nbsp mozhna otrimati dekilkoma ekvivalentnimi shlyahami Pidnesennya do stepenya 1 2 n H n P n 2 displaystyle 1 sqrt 2 n H n P n sqrt 2 nbsp 1 2 n H n P n 2 displaystyle 1 sqrt 2 n H n P n sqrt 2 nbsp Zvidki viplivaye H n 1 2 n 1 2 n 2 displaystyle H n frac 1 sqrt 2 n 1 sqrt 2 n 2 nbsp i P n 2 1 2 n 1 2 n 2 displaystyle P n sqrt 2 frac 1 sqrt 2 n 1 sqrt 2 n 2 nbsp Parni rekurentni vidnoshennya H n 1 n 0 H n 1 2 P n 1 n gt 0 displaystyle H n begin cases 1 n 0 H n 1 2P n 1 n gt 0 end cases nbsp P n 0 n 0 H n 1 P n 1 n gt 0 displaystyle P n begin cases 0 n 0 H n 1 P n 1 n gt 0 end cases nbsp abo v matrichnomu viglyadi H n P n 1 2 1 1 H n 1 P n 1 1 2 1 1 n 1 0 displaystyle begin pmatrix H n P n end pmatrix begin pmatrix 1 amp 2 1 amp 1 end pmatrix begin pmatrix H n 1 P n 1 end pmatrix begin pmatrix 1 amp 2 1 amp 1 end pmatrix n begin pmatrix 1 0 end pmatrix nbsp Takim chinom H n 2 P n P n H n 1 2 1 1 n displaystyle begin pmatrix H n amp 2P n P n amp H n end pmatrix begin pmatrix 1 amp 2 1 amp 1 end pmatrix n nbsp Nablizhennya Redaguvati Riznicya H n displaystyle H n nbsp i P n 2 displaystyle P n sqrt 2 nbsp dorivnyuye 1 2 n 0 41421 n displaystyle 1 sqrt 2 n approx 0 41421 n nbsp sho shvidko nablizhayetsya do nulya Takim chinom 1 2 n H n P n 2 displaystyle 1 sqrt 2 n H n P n sqrt 2 nbsp duzhe blizke do 2 H n displaystyle 2H n nbsp Iz cogo sposterezhennya viplivaye sho vidnoshennya cilih H n P n displaystyle frac H n P n nbsp shvidko nablizhayetsya do 2 displaystyle sqrt 2 nbsp u toj chas yak H n H n 1 displaystyle frac H n H n 1 nbsp i P n P n 1 displaystyle frac P n P n 1 nbsp shvidko nablizhayetsya do 1 2 displaystyle 1 sqrt 2 nbsp H2 2P2 1 Redaguvati Oskilki 2 displaystyle sqrt 2 nbsp ye irracionalnim nemozhlivo otrimati H P 2 displaystyle frac H P 2 nbsp tobto H 2 P 2 2 P 2 P 2 displaystyle frac H 2 P 2 frac 2P 2 P 2 nbsp Najkrashe sho mi mozhemo otrimati ce abo H 2 P 2 2 P 2 1 P 2 displaystyle frac H 2 P 2 frac 2P 2 1 P 2 nbsp abo H 2 P 2 2 P 2 1 P 2 displaystyle frac H 2 P 2 frac 2P 2 1 P 2 nbsp Nevid yemnimi rishennyami H 2 2 P 2 1 displaystyle H 2 2P 2 1 nbsp ye pari H n P n displaystyle H n P n nbsp z parnim n i rishennyami H 2 2 P 2 1 displaystyle H 2 2P 2 1 nbsp ye pari H n P n displaystyle H n P n nbsp z n neparnim Shob zrozumiti ce zauvazhimo H n 1 2 2 P n 1 2 H n 2 P n 2 2 H n P n 2 H n 2 2 P n 2 displaystyle H n 1 2 2P n 1 2 H n 2P n 2 2 H n P n 2 H n 2 2P n 2 nbsp tak sho pochinayuchi z H 0 2 2 P 0 2 1 displaystyle H 0 2 2P 0 2 1 nbsp znak cherguyetsya 1 1 displaystyle 1 1 nbsp Zauvazhimo teper sho kozhne pozitivne rishennya mozhna otrimati z rishennya z menshim indeksom zavdyaki rivnosti 2 P H 2 2 H P 2 H 2 2 P 2 displaystyle 2P H 2 2 H P 2 H 2 2P 2 nbsp Kvadratni trikutni chisla Redaguvati Neobhidnu rivnist t t 1 2 s 2 displaystyle frac t t 1 2 s 2 nbsp ekvivalentno 4 t 2 4 t 1 8 s 2 1 displaystyle 4t 2 4t 1 8s 2 1 nbsp sho peretvoryuyetsya v H 2 2 P 2 1 displaystyle H 2 2P 2 1 nbsp pri pidstanovci H 2 t 1 displaystyle H 2t 1 nbsp i P 2 s displaystyle P 2s nbsp Zvidsi n m rishennyam bude t n H 2 n 1 2 displaystyle t n frac H 2n 1 2 nbsp i s n P 2 n 2 displaystyle s n frac P 2n 2 nbsp Zauvazhimo sho t displaystyle t nbsp i t 1 displaystyle t 1 nbsp vzayemno prosti tak sho t t 1 2 s 2 displaystyle frac t t 1 2 s 2 nbsp mozhlivo tilki todi koli voni ye susidnimi cilimi odne kvadrat H 2 displaystyle H 2 nbsp j inshe podvoyenij kvadrat 2 P 2 displaystyle 2P 2 nbsp Oskilki mi znayemo vsi rishennya rivnyannya mi otrimuyemo t n 2 P n 2 n 0 mod 2 H n 2 n 1 mod 2 displaystyle t n begin cases 2P n 2 amp n equiv 0 pmod 2 H n 2 amp n equiv 1 pmod 2 end cases nbsp i s n H n P n displaystyle s n H n P n nbsp n displaystyle n nbsp H n displaystyle H n nbsp P n displaystyle P n nbsp t t 1 s a b c0 1 01 1 1 1 2 1 1 0 12 3 2 8 9 6 3 4 53 7 5 49 50 35 21 20 294 17 12 288 289 204 119 120 1695 41 29 1681 1682 1189 697 696 9856 99 70 9800 9801 6930 4059 4060 5741Tripleti Pifagora Redaguvati Rivnist c 2 a 2 a 1 2 2 a 2 2 a 1 displaystyle c 2 a 2 a 1 2 2a 2 2a 1 nbsp virno tilki pri 2 c 2 4 a 2 4 a 2 displaystyle 2c 2 4a 2 4a 2 nbsp sho peretvoryuyetsya v 2 P 2 H 2 1 displaystyle 2P 2 H 2 1 nbsp pri pidstanovci H 2 a 1 and P c displaystyle H 2a 1 mbox and P c nbsp Todi n m rishennyam ye a n H 2 n 1 1 2 displaystyle a n frac H 2n 1 1 2 nbsp i c n P 2 n 1 displaystyle c n P 2n 1 nbsp Tablicya vishe pokazuye sho z tochnistyu do poryadku a n displaystyle a n nbsp i b n a n 1 displaystyle b n a n 1 nbsp dorivnyuye H n H n 1 displaystyle H n H n 1 nbsp i 2 P n P n 1 displaystyle 2P n P n 1 nbsp v toj chas yak c n H n 1 P n P n 1 H n displaystyle c n H n 1 P n P n 1 H n nbsp Div takozh RedaguvatiRivnyannya PellyaPrimitki Redaguvati Napriklad Sellers Sellers v 2002 roci pokazav sho kilkist doskonalih parospoluchen v dekartovomu dobutku shlyahiv i grafu K4 e mozhe buti obchislena yak dobutok chisla Pellya na vidpovidne chislo Fibonachchi Pro matrichnu formulu i yiyi naslidkah divitsya Erkolano Ercolano 1979 Kilik Kilic i Taski Tasci 2005 Inshi totozhnosti dlya chisel Pellya navedeni Horadamom Horadam 1971 i Biknell Bicknell 1975 Ce zapisano v Shulba Sutras Divitsya napriklad Dutka Dutka 1986 yakij cituvav Tibauta Thibaut 1875 Divis Knorra Knorr 1976 z posilannyam na p yate stolittya sho vidpovidaye tverdzhennyam Prokla sho chisla vidkrili pifagorijci Povnishi doslidzhennya shodo znan davnih grekiv pro ci chisla divis u Tompsona Thompson 1929 Vedova Vedova 1951 Ridenhoura Ridenhour 1986 Knorra Knorr 1998 i Filepa Filep 1999 Napriklad u Derzhavi Platona ye posilannya na racionalnij diametr pchti pid yakim Platon mav na uvazi 7 chiselnik nablizhennya 7 5 A History of Greek Mathematics From Thales to Euclid Sir Thomas Little Heath Google Books Procitovano 28 sichnya 2013 Petho 1992 Cohn 1996 Hocha chisla Fibonachchi viznachayutsya rekurentnimi formulami duzhe shozhimi na formuli dlya chisel Pellya Kon Cohn pisav sho analogichni rezultati dlya chisel Fibonachchi nabagato skladnishe dovesti Utim yih doviv u 2006 roci Byuzho Bugeaud Sesskin 1962 Posilannya RedaguvatiBicknell Marjorie 1975 A primer on the Pell sequence and related sequences Fibonacci Quarterly 13 4 345 349 MR 0387173 Cohn J H E 1996 Perfect Pell powers Glasgow Mathematical Journal 38 1 19 20 MR 1373953 doi 10 1017 S0017089500031207 Dutka Jacques 1986 On square roots and their representations Archive for History of Exact Sciences 36 1 21 39 MR 0863340 doi 10 1007 BF00357439 Ercolano Joseph 1979 Matrix generators of Pell sequences Fibonacci Quarterly 17 1 71 77 MR 0525602 Filep Laszlo 1999 Pythagorean side and diagonal numbers Acta Mathematica Academiae Paedagogiace Nyiregyhaziensis 15 1 7 Horadam A F 1971 Pell identities Fibonacci Quarterly 9 3 245 252 263 MR 0308029 Kilic Emrah Tasci Dursun 2005 The linear algebra of the Pell matrix Boletin de la Sociedad Matematica Mexicana Tercera Serie 11 2 163 174 MR 2207722 Knorr Wilbur 1976 Archimedes and the measurement of the circle A new interpretation Archive for History of Exact Sciences 15 2 115 140 MR 0497462 doi 10 1007 BF00348496 Knorr Wilbur 1998 Rational diameters and the discovery of incommensurability American Mathematical Monthly 105 5 421 429 JSTOR 3109803 doi 10 2307 3109803 Knuth Donald E 1994 Leaper graphs The Mathematical Gazette 78 483 274 297 JSTOR 3620202 arXiv math CO 9411240 doi 10 2307 3620202 Martin Artemas 1875 Rational right angled triangles nearly isosceles The Analyst 3 2 47 50 JSTOR 2635906 doi 10 2307 2635906 Petho A 1992 The Pell sequence contains only trivial perfect powers Sets graphs and numbers Budapest 1991 Colloq Math Soc Janos Bolyai 60 North Holland s 561 568 MR 1218218 Ridenhour J R 1986 Ladder approximations of irrational numbers Mathematics Magazine 59 2 95 105 JSTOR 2690427 doi 10 2307 2690427 Santana S F Diaz Barrero J L 2006 Some properties of sums involving Pell numbers Missouri Journal of Mathematical Sciences 18 1 Arhiv originalu za 8 travnya 2007 Procitovano 25 travnya 2015 Sellers James A 2002 Domino tilings and products of Fibonacci and Pell numbers Journal of Integer Sequences 5 MR 1919941 Sesskin Sam 1962 A converse to Fermat s last theorem Mathematics Magazine 35 4 215 217 JSTOR 2688551 doi 10 2307 2688551 Thibaut George 1875 On the Sulvasutras Journal of the Royal Asiatic Society of Bengal 44 227 275 Thompson D Arcy Wentworth 1929 III Excess and defect or the little more and the little less Mind New Series 38 149 43 55 JSTOR 2249223 Vedova G C 1951 Notes on Theon of Smyrna American Mathematical Monthly 58 10 675 683 JSTOR 2307978 doi 10 2307 2307978 Otrimano z https uk wikipedia org w index php title Chislo Pellya amp oldid 40371187