www.wikidata.uk-ua.nina.az
Metod neviznachenih koeficiyentiv Rozkladannya na prosti drobi angl partial fraction decomposition algebrayichnogo drobu takogo drobu sho chiselnik i znamennik obidva mnogochleni ce operaciya yaka skladayetsya z virazhennya drobu yak sumi mnogochlena mozhlivo nulya i odnogo abo kilkoh drobiv z prostishimi znamennikami Rozkladannya na prosti drobi ye dosit vazhlivim napriklad u integralnomu chislenni oskilki cej algoritm daye mozhlivist obchisliti pervisnu racionalnoyi funkciyi nabagato prostishe Rozkladannya na prosti drobi mozhna vikoristati shob privesti racionalnij drib formi f x g x displaystyle frac f x g x de ƒ i g ye mnogochlenami do virazu formi j f j x g j x displaystyle sum j frac f j x g j x de gj x ce mnogochleni yaki ye dilnikami g x i zazvichaj menshogo stepenyu Otzhe rozklad na prosti drobi mozhna rozglyadati yak proceduru obernenu do prostishoyi operaciyi dodavannya algebrayichnih drobiv rezultatom yakoyi ye yedinij algebrayichnij drib z chiselnikom i znamennikom zazvichaj vishogo stepenyu Povnij rozklad provodit peretvorennya tak daleko yak tilki mozhlivo inakshe kazhuchi g faktorizuyetsya na stilki na skilki ce mozhlivo Otzhe na vihodi povnogo rozkladu na prosti drobi mi mayemo sumu drobiv de znamennik kozhnogo virazu stepin nezvidnogo mnogochlena i chiselnik mnogochlen menshogo stepenya nizh cej nezvidnij mnogochlen Dlya zmenshennya stepenya chiselnika napryamu mozhna vikoristati evklidove dilennya mnogochleniv ale yaksho ƒ menshogo stepenya nizh g ce ne dopomozhe Zmist 1 Prikladi 1 1 Priklad 1 1 2 Priklad 2 1 3 Priklad 3 2 Rozkladannya racionalnih drobiv na elementarni drobi 3 Dzherela 4 Div takozh 5 PosilannyaPrikladi RedaguvatiPriklad 1 Redaguvati f x 1 x 2 2 x 3 displaystyle f x frac 1 x 2 2x 3 nbsp Tut znamennik mozhna rozklasti na dva rizni linijni mnozhniki q x x 2 2 x 3 x 3 x 1 displaystyle q x x 2 2x 3 x 3 x 1 nbsp Otzhe mi mayemo takij rozklad f x 1 x 2 2 x 3 A x 3 B x 1 displaystyle f x frac 1 x 2 2x 3 frac A x 3 frac B x 1 nbsp Mnozhennya na x2 2x 3 daye nam take rivnyannya 1 A x 1 B x 3 displaystyle 1 A x 1 B x 3 nbsp Zamina x 3 daye A 1 4 i zamina x 1 daye B 1 4 Otzhe f x 1 x 2 2 x 3 1 4 1 x 3 1 x 1 displaystyle f x frac 1 x 2 2x 3 frac 1 4 left frac 1 x 3 frac 1 x 1 right nbsp Priklad 2 Redaguvati f x x 3 16 x 3 4 x 2 8 x displaystyle f x frac x 3 16 x 3 4x 2 8x nbsp Pislya dilennya mnogochleniv mi mayemo f x 1 4 x 2 8 x 16 x 3 4 x 2 8 x 1 4 x 2 8 x 16 x x 2 4 x 8 displaystyle f x 1 frac 4x 2 8x 16 x 3 4x 2 8x 1 frac 4x 2 8x 16 x x 2 4x 8 nbsp Oskilki 4 2 4 8 16 lt 0 mnozhnik x2 4x 8 ye nezvidnim i rozklad na prosti drobi nad polem dijsnih chisel takij 4 x 2 8 x 16 x x 2 4 x 8 A x B x C x 2 4 x 8 displaystyle frac 4x 2 8x 16 x x 2 4x 8 frac A x frac Bx C x 2 4x 8 nbsp Mnozhachi na x3 4x2 8x otrimuyemo totozhnist 4 x 2 8 x 16 A x 2 4 x 8 B x C x displaystyle 4x 2 8x 16 A x 2 4x 8 Bx C x nbsp Beruchi x 0 mi bachimo sho 16 8A otzhe A 2 Porivnyuyuchi koeficiyenti pri x2 mi bachimo sho 4 A B 2 B otzhe B 2 Z porivnyannya linijnih koeficiyentiv mi bachimo sho 8 4A C 8 C otzhe C 0 V pidsumku f x 1 2 1 x x x 2 4 x 8 displaystyle f x 1 2 left frac 1 x frac x x 2 4x 8 right nbsp Priklad 3 Redaguvati Cej priklad demonstruye majzhe vsi mozhlivi hitroshi yaki mogli b znadobitisya v rozv yazanni za dopomogoyu SKA f x x 9 2 x 6 2 x 5 7 x 4 13 x 3 11 x 2 12 x 4 x 7 3 x 6 5 x 5 7 x 4 7 x 3 5 x 2 3 x 1 displaystyle f x frac x 9 2x 6 2x 5 7x 4 13x 3 11x 2 12x 4 x 7 3x 6 5x 5 7x 4 7x 3 5x 2 3x 1 nbsp Pislya dilennya mnogochleniv i faktorizaciyi znamennika mayemo f x x 2 3 x 4 2 x 6 4 x 5 5 x 4 3 x 3 x 2 3 x x 1 3 x 2 1 2 displaystyle f x x 2 3x 4 frac 2x 6 4x 5 5x 4 3x 3 x 2 3x x 1 3 x 2 1 2 nbsp Rozklavshi na prosti drobi otrimuye taku formu 2 x 6 4 x 5 5 x 4 3 x 3 x 2 3 x x 1 3 x 2 1 2 A x 1 B x 1 2 C x 1 3 D x E x 2 1 F x G x 2 1 2 displaystyle frac 2x 6 4x 5 5x 4 3x 3 x 2 3x x 1 3 x 2 1 2 frac A x 1 frac B x 1 2 frac C x 1 3 frac Dx E x 2 1 frac Fx G x 2 1 2 nbsp Mnozhachi na x 1 3 x2 1 2 perehodimo do totozhnih mnogochleniv 2 x 6 4 x 5 5 x 4 3 x 3 x 2 3 x A x 1 2 x 2 1 2 B x 1 x 2 1 2 C x 2 1 2 D x E x 1 3 x 2 1 F x G x 1 3 displaystyle begin aligned amp quad 2x 6 4x 5 5x 4 3x 3 x 2 3x amp A x 1 2 x 2 1 2 B x 1 x 2 1 2 C x 2 1 2 Dx E x 1 3 x 2 1 Fx G x 1 3 end aligned nbsp Beruchi x 1 otrimuyemo 4 4C otzhe C 1 Tak samo beruchi x i otrimuyemo 2 2i Fi G 2 2i otzhe Fi G 1 zvidsi F 0 i G 1 cherez pririvnyuvannya dijsnih i uyavnih skladovih Z C G 1 i F 0 beruchi x 0 mi otrimuyemo A B 1 E 1 0 takim chinom E A B Mayemo totozhnist 2 x 6 4 x 5 5 x 4 3 x 3 x 2 3 x A x 1 2 x 2 1 2 B x 1 x 2 1 2 x 2 1 2 D x A B x 1 3 x 2 1 x 1 3 A x 1 2 x 2 1 2 x 1 3 x 2 1 B x 1 x 2 1 x 1 3 x 2 1 x 2 1 2 D x x 1 3 x 2 1 x 1 3 displaystyle begin aligned amp 2x 6 4x 5 5x 4 3x 3 x 2 3x amp A x 1 2 x 2 1 2 B x 1 x 2 1 2 x 2 1 2 Dx A B x 1 3 x 2 1 x 1 3 amp A x 1 2 x 2 1 2 x 1 3 x 2 1 B x 1 x 2 1 x 1 3 x 2 1 x 2 1 2 Dx x 1 3 x 2 1 x 1 3 end aligned nbsp Rozkrivayuchi duzhki i sortuyuchi stepeni x otrimuyemo 2 x 6 4 x 5 5 x 4 3 x 3 x 2 3 x A D x 6 A 3 D x 5 2 B 4 D 1 x 4 2 B 4 D 1 x 3 A 2 B 3 D 1 x 2 A 2 B D 3 x displaystyle begin aligned amp 2x 6 4x 5 5x 4 3x 3 x 2 3x amp A D x 6 A 3D x 5 2B 4D 1 x 4 2B 4D 1 x 3 A 2B 3D 1 x 2 A 2B D 3 x end aligned nbsp Teper mi mozhemo porivnyati koeficiyenti i pobachiti sho A D 2 A 3 D 4 2 B 4 D 1 5 2 B 4 D 1 3 A 2 B 3 D 1 1 A 2 B D 3 3 displaystyle begin aligned A D amp amp 2 A 3D amp amp 4 2B 4D 1 amp amp 5 2B 4D 1 amp amp 3 A 2B 3D 1 amp amp 1 A 2B D 3 amp amp 3 end aligned nbsp z A 2 D i A 3 D 4 viplivaye sho A D 1 i z cogo B 0 dali C 1 E A B 1 F 0 i G 1 Otzhe rozklad na prosti drobi dlya ƒ x takij f x x 2 3 x 4 1 x 1 1 x 1 3 x 1 x 2 1 1 x 2 1 2 displaystyle f x x 2 3x 4 frac 1 x 1 frac 1 x 1 3 frac x 1 x 2 1 frac 1 x 2 1 2 nbsp Zamist rozkrivannya duzhok inshi linijni zalezhnosti koeficiyentiv mozhna bulo otrimati cherez obchislennya pohidnih u x 1 i x i v poperednij polinomialnij totozhnosti Dlya cogo zgadajmo sho pohidna v x a vid x a mp x znikaye yaksho m gt 1 i ye prosto p a yaksho m 1 Otzhe napriklad persha pohidna v x 1 daye 2 6 4 5 5 4 3 3 2 3 A 0 0 B 2 0 8 D 0 displaystyle 2 cdot 6 4 cdot 5 5 cdot 4 3 cdot 3 2 3 A cdot 0 0 B cdot 2 0 8 D cdot 0 nbsp tobto 8 2B 8 otzhe B 0 Rozkladannya racionalnih drobiv na elementarni drobi RedaguvatiKlasichnim prikladom zastosuvannya metodu neviznachenih koeficiyentiv ye rozkladannya pravilnogo racionalnogo drobu v oblasti kompleksnih abo dijsnih chisel na najprostishi drobi Nehaj p z displaystyle p z nbsp i q z displaystyle q z nbsp mnogochleni z kompleksnimi koeficiyentami prichomu stepin mnogochlena p z displaystyle p z nbsp menshe stepeni mnogochlena q z displaystyle q z nbsp koeficiyent pri starshomu chleni mnogochlena q z displaystyle q z nbsp dorivnyuye 1 z i displaystyle z i nbsp i 1 k displaystyle i in 1 k nbsp koreni mnogochlena q z displaystyle q z nbsp z kratnostyami a i displaystyle alpha i nbsp otzhe q z z z 1 a 1 z z 2 a 2 z z k a k displaystyle q z z z 1 alpha 1 z z 2 alpha 2 z z k alpha k nbsp Funkciya p q displaystyle p q nbsp mozhe buti podana i prichomu yedinim sposobom u viglyadi sumi elementarnih drobiv p z q z i 1 k j 1 a i A i j z z i j displaystyle frac p z q z sum i 1 k sum j 1 alpha i frac A i j z z i j nbsp de A i j displaystyle A i j nbsp nevidomi poki kompleksni chisla yih kilkist dorivnyuye stepeni q displaystyle q nbsp Dlya yih znahodzhennya obidvi chastini rivnosti privodyat do spilnogo znamennika Pislya jogo vidkidannya i privedennya v pravij chastini podibnih chleniv oderzhuyetsya rivnist yaka zvoditsya do sistemi linijnih rivnyan vidnosno A i j displaystyle A i j nbsp Primitka Znahodzhennya nevidomih mozhna sprostiti yaksho q z displaystyle q z nbsp maye nekratni korni z j displaystyle z j nbsp Pislya mnozhennya na z z j displaystyle z z j nbsp ostannoyi rivnosti i pidstanovki z z j displaystyle z z j nbsp bezposeredno oderzhuyemo znachennya vidpovidnogo koeficiyenta A j p z j i j z j z i a i displaystyle A j frac p z j prod limits i neq j z j z i alpha i nbsp Dzherela RedaguvatiKorn G Korn T 1977 Spravochnik po matematike dlya nauchnih rabotnikov i inzhenerov ros vid druge Moskva Nauka s 832 s Div takozh RedaguvatiRozkladannya drobiv pri integruvanniPosilannya RedaguvatiWeisstein Eric W Rozklad na prosti drobi angl na sajti Wolfram MathWorld Otrimano z https uk wikipedia org w index php title Rozkladannya na prosti drobi amp oldid 37547935