www.wikidata.uk-ua.nina.az
Proce sing kotranskripci jna modifika ciya posttranskripci jna modifika ciya dozrivannya novosintezovanoyi molekuli RNK do yiyi funkcionalno aktivnoyi formi Kotranskripcijnij procesing pre mRNK do zriloyi mRNK 1 2 Kompleks DNK zalezhnoyi RNK polimerazi zbirayetsya na promotornij dilyanci gena ne vkazano na shemi i pochinaye ruhatisya vzdovzh molekuli DNK RNK polimeraza II Pol II pochinaye sintezuvati RNK pislya rozpiznavannya startovoyi tochki transkripciyi Start Sintezovana pre mRNK sinya hvilyasta liniya vihodit iz kompleksu i rozpiznayetsya faktorami kepuvannya FK sho z yednanni z C kincevim domenom RNK polimerazi II SKD Do faktoriv kepuvannya nalezhat dva fermenti ferment sho priyednuye kep angl mRNA capping enzyme ta guanil N7 metiltransferaza Zirochki Voni modifikuyut 5 kinec en pre mRNK formuyuchi kep iz yakim z yednuyetsya kep zv yazuyuchij kompleks angl cap binding complex KZK Pislya zchituvannya dilyanki sho koduye intron splajsosoma virizaye jogo iz pre mRNK po 5 ta 3 splajs sajtah 5 SS 3 SS Modifikaciyi gistonovih hvostiv nukleosomi PTM mozhut vplivati na splajsing strilochka Virizanij intron maye formu laso Pislya zchituvannya sajtu poliadeniluvannya AATAAA pre mRNK vidrizayetsya za dopomogoyu roboti dekilkoh bilkiv CPSF en faktor sho specifichno rozrizaye dilyanku poli A angl Cleavage and polyadenylation specificity factor CstF en angl Cleavage stimulation Factor ta inshi faktori rozrizannya FR Deyaki faktori postijno z yednani z C kincevim domenom RNK polimerazi II nezvazhayuchi na te sho voni vzhe vikonali svoyu funkciyu Yaskravim prikladom procesingu ye dozrivannya pre mRNK do zriloyi mRNK iz yakoyi v citoplazmi bude zchituvatisya informaciya pro aminokislotnu poslidovnist bilkiv translyaciya Utim procesingu zaznayut ne lishe mRNK a j bagato vidiv nekoduyuchih RNK transportna RNK ta ribosomna RNK U pidruchnikah chasto pishut sho dozrivannya pre mRNK vidbuvayetsya pislya yiyi zchituvannya z DNK matrici 2 Take yavishe vidpovidaye laboratornim umovam in vitro koli stadiyi procesingu mRNK vivchayut postupovo nezalezhno odna vid odnoyi Ale za umov in vivo u zhivih klitinah procesing mRNK vidbuvayetsya bezposeredno pid chas transkripciyi v skladi RNK polimeraznogo kompleksu 1 Tomu korektnim terminom dlya mRNK dozrivannya ye kotranskripcijna modifikaciya 2 Prote ne vsi vidi RNK zaznayut procesingu pid chas sintezu Tak molekuli tRNK drizhdzhiv Saccharomyces cerevisiae dozrivayut zaznayut splajsingu u citoplazmi z podalshim eksportom u yadro i povernennyam do citoplazmi 3 tomu v takomu vipadku korektnim ye termin posttranskripcijna modifikaciya Ale u fahovij literaturi chastishe vikoristovuyut termin procesing tRNK Zmist 1 Procesing mRNK 1 1 Kepuvannya 1 2 Splajsing 1 2 1 Alternativnij splajsing 1 3 Poliadeniluvannya 1 3 1 Alternativne poliadeniluvannya 1 4 Regulyaciya procesingu mRNK 1 5 Procesing mRNK gistoniv 2 Procesing tRNK 3 Procesing rRNK 4 Procesing inshih nekoduyuchih RNK 4 1 Nekoduyuchi RNK sho berut uchast u RNK interferenciyi 4 1 1 Procesing mikroRNK 4 1 2 Procesing miRNK 4 1 3 Procesing piRNK 4 2 Dovgi nekoduyuchi RNK 5 Redaguvannya ta modifikaciyi RNK 5 1 Redaguvannya RNK 5 2 Modifikaciyi RNK 5 2 1 Modifikaciyi uridinu 5 2 2 Modifikaciyi adenozinu 5 2 3 Modifikaciyi citozinu 5 2 4 Modifikaciyi ribozi 6 Porushennya procesingu RNK ta hvorobi 7 Div takozh 8 Primitki 9 DzherelaProcesing mRNK Redaguvati nbsp Budova zriloyi mRNK Poslidovnist yaka koduye bilok formuyetsya z dekilkoh ekzoniv pid chas splajsingu kep ta poli A hvist formuyutsya pid chas kepuvannya ta poliadeniluvannya Procesing pre mRNK do zriloyi mRNK vidbuvayetsya bezposeredno v skladi RNK polimeraznogo kompleksu v yadri Sintez mRNK vikonuye RNK polimeraza II Do yiyi C kincevogo domenu priyednuyutsya faktori sho diyut na riznih stadiyah dozrivannya transkriptu Oskilki procesing vidbuvayetsya bezposeredno pid chas sintezu molekuli RNK a splajsing vidbuvayetsya odrazu pislya sintezu splajs sajtiv to pre mRNK transkript dlya bilshosti geniv bagatoklitinnih organizmiv mozhna nazvati umovnoyu teoretichnoyu molekuloyu yaka ne isnuye yak taka in vivo 4 Odnak mozhlivi varianti splajsingu poza RNK polimeraznim kompleksom 5 Zagalom procesing mRNK dilitsya na zminu 3 ta 5 kincevih dilyanok molekuli kepuvannya ta poliadeniluvannya vidpovidno ta splajsing virizannya chastin molekuli RNK introniv Modifikaciyi 3 ta 5 kincevih dilyanok molekuli RNK ne lishe mRNK duzhe vazhlivi dlya stabilnosti RNK pid chas perebuvannya v yadri Vidkriti kinci RNK stayut mishenyami nukleaz takih yak kompleks ekzosoma Tomu molekuli RNK yaki perebuvayut pevnij chas u yadri mayut zmini na svoyih 3 ta 5 kincevih dilyankah 6 Kepuvannya Redaguvati nbsp Shematichnij mehanizm priyednannya kepu do pre mRNK Dokladnishe KepKepuvannya ce dodavannya kepu do 5 kincya en pre mRNK sho vidbuvayetsya v dekilka stadij za dopomogoyu fermentu sho priyednuye kep angl mRNA capping enzyme ta guanil N7 metiltransferazi Unaslidok cih reakcij na 5 kinci mRNK formuyutsya odin chi dva modifikovani nukleotidi najchastishe metil guanidin z yednani z reshtoyu mRNK nezvichajnim 5 5 trifosfatnim zv yazkom Kepuvannya vikonuye taki funkciyi zahist mRNK vid degradaciyi nukleazami uchast u podalshomu procesingu splajsingu eksport mRNK u citoplazmu uchast u translyaciyi Splajsing Redaguvati Dokladnishe SplajsingSplajsing ce mehanizm zavdyaki yakomu virizayutsya introni nekoduyuchi dilyanki pre mRNK tobto poslidovnosti yaki potim ne budut vikoristani yak matricya dlya biosintezu bilkiv Zrila mRNK vtrachaye introni zalishayuchi u svoyemu skladi lishe ekzoni Splajsing vidbuvayetsya za uchasti splajsosomi sho mistit mali yaderni RNK U bagatoh vipadkah pre mRNK she prodovzhuye sintezuvatisya todi yak introni vzhe virizayutsya Intron sho virizayetsya maye formu laso angl lariat Shvidkist splajsingu v evkariot dosit velika u 10 vipadkiv u drizhdzhiv splajsosoma mozhe vidrizati intron koli polimeraza znahoditsya na vidstani lishe u 26 36 nukleotidiv a 50 splajsingu zavershuyetsya za 1 4 sek pislya zavershennya sintezu 3 kincevogo splajs sajtu 7 Alternativnij splajsing Redaguvati nbsp Shematichne zobrazhennya alternativnogo splajsingu pov yazane z funkciyami bilka a Vipadok koli funkcionalnij element bilkovoyi molekuli zakodovanij v odnomu ekzoni yakij mozhe vvijti do skladu zriloyi mRNK a mozhe buti viluchenij splajsosomoyu b Koli funkcionalnij element bilkovoyi molekuli zakodovanij u dvoh nesusidnih ekzonah Na protivagu poperednomu mehanizmu u comu vipadku korotkij splajs variant yakij vtrativ odin ekzon bude koduvati bilok sho maye funkcionalnu odinicyu todi yak dovgij ni 8 Dokladnishe Alternativnij splajsingU bagatoh eukariotiv kilkist bilkiv sho mozhut formuvatis u klitinah znachno perevishuye kilkist geniv zakodovanih u yadri Tak zgidno z rezultatami proyektu ENCODE Enciklopediya elementiv DNK 2012 roku 9 u lyudini nayavnij 21 061 gen sho koduye bilki todi yak samih bilkiv u klitinah lyudini vid 250 000 do miljona Riznomanittya bilkiv porivnyano z kilkistyu geniv dosyagayetsya takozh zavdyaki yavishu alternativnogo splajsingu Pri alternativnomu splajsingu z molekuli pre mRNK virizayutsya rizni kombinaciyi introniv a perekombinovani ekzoni zshivayutsya ta formuyut rizni zrili mRNK Takim chinom z odnogo gena mozhna otrimati odnu pre mRNK ale bagato vidiv zriloyi mRNK i vidpovidno bagato riznih bilkiv Geni pivnih drizhdzhiv Saccharomyces cerevisiae mistyat neveliku kilkist korotkih introniv a v inshih odnoklitinnih eukariot napriklad tripanosom najchastishe yih zovsim nemaye Tomu alternativnij splajsing v odnoklitinnih yadernih vidbuvayetsya ridko 4 Natomist u bagatoklitinnih eukariotiv alternativnij splajsing duzhe poshirene yavishe Tak u lyudini priblizno 95 pre mRNK pidlyagayut comu procesu 10 Varianti mRNK sho utvorilisya z odniyeyi pre mRNK nazivayut splajs variantami abo mRNK izoformami 11 i chasto voni buvayut tkaninno specifichnimi tobto odin splajs variant isnuye v odnij tkanini drugij v inshij U plodovoyi muhi D melanogaster alternativnij splajsing sprichinyuye determinaciyu stati a odin gen Dscam angl Down syndrome cell adhesion molecule koduye ponad 38 000 riznih variantiv mRNK i vidpovidno bilkiv kilkist sho bilsha za chislo geniv u cogo vidu muh 4 Osnovnimi regulyatoram viboru variantiv splajsingu ye sila splajs sajtu modifikaciyi gistonovih hvostiv div ilyustraciyu Shematichne zobrazhennya kotranskripcijnogo procesingu pre mRNK do zriloyi mRNK ta poziciya nukleosomi 4 vzayemodiya RNK z riznimi RNK zv yazuyuchimi bilkami tosho 12 Sila splajs sajtu vidpovidaye chastoti vpiznavannya cogo sajtu splajsosomoyu i vklyuchennya danogo ekzonu u vsih sintezovanih mRNK ce tak zvanij konstitutivnij splajsing 12 U regulyaciyi splajsingu berut uchast bilki regulyatori splajsingu angl SR proteins taki yak NOVA1 13 ta PTBP1 angl Polypyrimidine tract binding protein 1 14 ta geterogenni yaderni ribonukleoproteyini gyaRNP angl hnRNP 11 Okrim uchasti alternativnogo splajsingu v normalnij zhittyediyalnosti organizmu ce yavishe mozhe prizvoditi do hvorob 15 Prote ne vsi transkripti zgenerovani alternativnim splajsingom mozhut koduvati bilki chi vikonuvati inshi funkciyi 12 Poliadeniluvannya Redaguvati Dokladnishe PoliadeniluvannyaPislya vidrizannya angl cleavage transkriptu vid RNK polimeraznogo kompleksu do molekuli pre mRNK iz 3 kincya en dodayetsya hvist iz bagatoh zalishkiv adeninu zvidki pohodit i nazva reakciyi Signal poliadeniluvannya poliA chi polyA signal inodi polyA sajt tak samo yak i startovij signal zakodovanij u geni i vidpovidno zchituyetsya RNK polimerazoyu II u pre mRNK PolyA signal maye 2 komponenti poslidovnist iz 6 nukleotidiv AAUAAA T u DNK zaminyuyetsya na U v RNK ta U abo G U zbagachena poslidovnist sho rozmishuyetsya na vidstani 20 nukleotidiv vid pershogo signalu Bilki CPSF angl Cleavage Polyadenylation Specificity Factor ta CstF angl Cleavage stimulation Factor rozpiznayut ci signali 16 PolyA polimeraza sintezuye hvist dovzhinoyu v 100 200 adeninovih nukleotidiv Dovzhina polyA hvosta variyuye mizh riznimi vidami Tak u lyudini v serednomu dodayetsya 250 300 adeniniv a u drizhdzhiv 70 80 16 Poliadeniluvannya vidbuvayetsya odrazu pislya rozsheplennya molekuli RNK chervoni nozhici na shemi Kotranskripcijnij procesing pre mRNK do zriloyi mRNK tomu signal dlya poliadeniluvannya she nazivayut signalom dlya rozsheplennya ta poliadeniluvannya angl cleavage and polyadenylation 17 Poliadeniluvannya vikonuye taki funkciyi 17 Eksportuvannya mRNK z yadra Stabilnist mRNK vklyuchayuchi zahist mRNK vid degradaciyi nukleazami Uchast u translyaciyi Posttranskripcijna regulyaciya en ekspresiyi geniv Dovzhina polyA hvosta maye vazhlive znachennya dlya kontrolyu kilkosti bilkiv sho budut sintezovani iz ciyeyi RNK Takozh u 3 netranslovanij dilyanci mistyatsya sajti rozpiznavannya molekulami RNK interferencijnogo mehanizmu takimi yak mikroRNK Alternativne poliadeniluvannya Redaguvati Dokladnishe Alternativne poliadeniluvannyaNaprikinci pershogo desyatirichchya XXI st stalo mozhlivim robiti sekvenuvannya RNK en angl RNA Seq cilih transkriptomiv en Ce dalo mozhlivist vstanoviti sho bagato geniv lyudini mayut bilshe odnogo polyA signalu sho prizvodit do formuvannya riznih 3 kinciv odniyeyi pre mRNK 16 Do 2011 roku stalo zrozumilo sho bagato bilok koduyuchih geniv mayut ne odin a dekilka sajtiv poliadeniluvannya mizh yakimi vidbuvayetsya vibir pid chas sintezu mRNK U lyudini 50 geniv mozhut koduvati rizni transkripti zavdyaki alternativnomu poliadeniluvannyu 18 U deyakih vipadkah alternativne poliadeniluvannya prizvodit do zmini aminokislotnoyi poslidovnosti bilkiv todi yak v inshih variaciyi vinikayut v 3 nekoduyuchij dilyanci mRNK a koduyucha poslidovnist zalishayetsya nezminnoyu 18 Pri vibori sajtu poliadeniluvannya mozhe trapitis vkorochennya 3 netranslovanoyi dilyanki molekuli mRNK sho prizvede do vtrati regulyatornih elementiv dlya vzayemodiyi z mikroRNK 19 todi najimovirnishe mRNK bude menshe prignichuvatisya i vidpovidno z neyi sintezuvatimetsya bilshe bilkiv 18 Vibir polyA sajtu zalezhit vid bagatoh umov takih yak rist klitini yiyi rozvitok ta diferenciaciya a takozh patologichni procesi zokrema rozvitok puhlin 18 Prikladom alternativnogo poliadeniluvannya ye gen vazhkogo lancyuga imunoglobulinu IgM bilok yakogo prohodit zminu vid membrannozv yazanoyi do vilnoyi formi Taka zmina ye rezultatom viboru odnogo iz dvoh polyA sajtiv 18 Alternativne poliadeniluvannya chasto traplyayetsya pid chas utvorennya nejroniv de za rahunok takogo procesu sotni geniv mayut bilshi 3 netranslovani dilyanki taki geni otrimali nazvu podovzhenih angl extended gene Osnovnim bilkom yakij prizvodit do formuvannya dovshogo 3 kincya u nejroniv RNK zv yazuyuchij bilok Elav angl embryonic lethal abnormal visual U plodovoyi muhi jogo aktivnist zalezhit vid promotornoyi dilyanki geniv U podovzhenih geniv RNK polimeraza II ferment sho sintezuye RNK zatrimuyetsya na dovshij chas na pochatkovih stadiyah transkripciyi v porivnyanni z inshimi genami 20 21 Cikavim ye te sho alternativne poliadeniluvannya mozhe vplivati na rozmishennya bilku sho zchituyetsya z danoyi mRNK u klitini hocha pri comu ne zminyuyetsya prostorove rozmishennya samoyi mRNK u citoplazmi Tak mRNK CD47 u klitinnih liniyah lyudini mozhe mati dva varianti 3 netranslovanoyi dilyanki korotshu i dovshu Bilki CD47 yaki translyuvalis iz mRNK z dovshoyu 3 netranslovanoyu dilyankoyu rozmishuvalisya zdebilshogo bilya poverhni klitin a CD47 proteyini yaki bulo sintezovano z korotshoyi formi mRNK buli znajdeni v endoplazmatichnomu retikulumi 22 Vidsutnist poliadeniluvannya poli A mRNK gistoniv tipovo ne pidlyagayut poliadeniluvannyu u vsih organizmiv natomist mayut specifichni strukturi na 3 kinci div p Procesing mRNK gistoniv yaki zahishayut yih vid degradaciyi nukleazami Ale krim mRNK gistoniv u klitinnih liniyah H9 ta HeLa bulo znajdeno mRNK yaki mozhut u deyakih vipadkah ne mati poli A hvostu taki yak mRNK znf460 ta sesn3 23 Regulyaciya procesingu mRNK Redaguvati Pauzi yaki robit RNK polimeraza II modifikaciyi yiyi C kincevogo domenu fosforilyuvannya metilyuvannya DNK poziciya nukleosomi modifikaciyi gistonovih hvostiv yih metilyuvannya en acetilyuvannya ta deacetilyuvannya en formuvannya vtorinnih struktur sintezovanoyi RNK 24 modifikaciyi nukleotidiv ta redaguvannya RNK vsi ci faktori sho po pershe mozhut vplivati odin na odnogo a po druge regulyuyut procesing prizvodyat do nayavnosti chi vidsutnosti kepu viboru sajtiv splajsingu ta polyA sajtiv dlya alternativnogo splajsingu ta poliadeniluvannya vidpovidno Takim chinom ci zmini prizvodyat do riznomanittya mRNK ta vstanovlyuyut dolyu transkriptu chi bude mRNK odrazu rujnuvatisya ekzosomnim kompleksom u yadri chi bude eksportovana do citoplazmi i chi zmozhut mikroRNK vzayemodiyati z neyu prignichuyuchi biosintez bilkiv ta abo degraduvati yiyi v citoplazmi 2 Procesing mRNK gistoniv Redaguvati nbsp Struktura mRNK gistoniv metazoa 5 NTR 5 netranslovana dilyanka en 3 NTR 3 netranslovana dilyanka en zelenij praporec indikuye start vidkritoyi ramki zchituvannya Poslidovnist v 5 nukleotidiv ACCCA pritamanna lyudini ta in ssavcyam todi yak u plodovoyi muhi cya poslidovnist ACCA u C elegans ACAAA 25 Dokladnishe Gistoni Dokladnishe NukleosomaSintez i dozrivannya mRNK gistoniv sho skladayut nukleosomu H2A H2B H3 ta H4 i linkernogo gistonu H1 vidriznyayetsya vid procesingu inshih eukariotichnih mRNK Po pershe sintez mRNK cih gistoniv vidbuvayetsya u strogij zalezhnosti vid klitinnogo ciklu geni gistnoniv ekspresuyutsya na pochatku S fazi Pri chomu po zavershennyu S fazi abo pri pripinenni z riznih prichin replikaciyi DNK mRNK cih gistoniv shvidko rujnuyetsya kompleksom ekzosomi 25 Struktura mRNK zaznachenih p yati gistoniv vidriznyayetsya vid mRNK inshih geniv ce yedini vidomi mRNK eukariot u yakih stabilno vidsutnij polyA hvist tobto u nih ne vidbuvayetsya poliadeniluvannya Natomist mRNK gistoniv mayut strukturu steblo petlya yaka formuyetsya 6 parami nukleotidiv ta 4 nukleotidami u samij petli Takozh osoblivistyu strukturi mRNK gistoniv ye vidsutnist introniv ta neveliki rozmiri 5 ta 3 netranslovanih dilyanok hocha ce mozhe buti pritamannim i inshim eukariotichnim genam 25 Oskilki struktura mRNK gistoniv vidriznyayetsya vid mRNK inshih geniv procesing yih takozh maye osoblivosti Splajsing mRNK gistoniv ne vidbuvayetsya za vidsutnosti introniv Procesing 3 netranslovanoyi dilyanki vklyuchaye v sebe nizku nestandartnih fermentiv ta ribonukleoproteyinovih kompleksiv takih yak U7 myaRNK ZFP100 26 LSM11 LSM10 27 28 Vidrizannya mRNK gistonu pid chas transkripciyi vidbuvayetsya u misci mizh strukturoyu steblo petlya i poslidovnistyu yaka znahoditsya na vidstani 15 nukleotidiv dali i maye nazvu HDE angl histone downstream element 25 Cikavim ye te sho varianti gistoniv taki yak H3 3 macro H2A H2A Z ta H1 0 sintezuyutsya ta procesuyutsya yak inshi mRNK Tobto yih transkripciya jde ne lishe v S fazu a vprodovzh vsogo ciklu klitini ta v nih vidbuvayetsya poliadeniluvannya 25 Procesing tRNK RedaguvatiDokladnishe Transportna ribonukleyinova kislota Dokladnishe Translyaciya biologiya nbsp Vtorinna struktura zriloyi molekuli tRNK sho vidpovidaye aminokisloti fenilalaninu antikodon poznachnij chervonim kolorom Vsi modifikovani nukleotidi vklyuchayuchi vipadki metilyuvannya ta zamini nukleotidiv poznachni sinim ps psevdouridin 3 kinec molekuli mistit poslidovnist iz troh nukleotidiv CCA citozin citozin adenin sho ye duzhe konservativnoyu v organizmiv i do yakoyi priyednuyetsya aminokislota Proces biosintezu bilkiv maye neobhidnu lanku molekulu transportnoyi RNK tRNK yaka povinna rozpiznati triplet poslidovnist iz troh nukleotidiv matrichnoyi RNK mRNK sho zavantazhena na ribosomu i vidpovidno do takogo tripletnogo kodu donesti aminokislotu do polipeptidnogo lancyuga bilku sho sintezuyetsya Ale molekula tRNK ne sintezuyetsya v gotovomu viglyadi vona transkribuyetsya RNK polimerazoyu III en z DNK matrici u viglyadi pre tRNK i prohodit stadiyu dozrivannya u rezultati yakoyi nabuvaye tretinnoyi strukturi L podibnoyi formi zavdovzhki u 74 95 nukleotidiv najchastishe 76 Z odnogo kincya vona mistit antikodonovu poslidovnist sho bude komplementarnoyu kodonu mRNK z inshogo aminokislotu akceptorne steblo 29 Procesing tRNK vklyuchaye p yat etapiv 30 Vid yednannya 5 poslidovnosti angl 5 leader RNKazoyu P en za uchasti ribonukleoproteyinovogo kompleksu Vid yednannya 3 hvosta angl 3 trailer kombinaciyeyu z dekilkoh ekzo ta endonukleaz Dodavannya poslidovnosti troh nukleotidiv CCA citozin citozin adenin do 3 kincya molekuli yaki budut nesparenimi i do yakih bude priyednuvatisya aminokislota Virizannya intronu splajsing yake vidbuvayetsya v bilshosti eukariotiv ta u deyakih tRNK arhej Modifikaciyi tRNK v riznih miscyah vklyuchayuchi redaguvannya RNK metilyuvannya nukleotidiv 5 kinec pre tRNK rozrizayetsya RNKazoyu P a 3 poslidovnist procesuyetsya tRNKazoyu Z angl tRNase Z ta inshimi fermentami 31 U lyudini traplyayutsya pre tRNK yak z intronom tak i bez nogo Endonukleaza yaka zdijsnyuye splajsing pre tRNK maye chotiri komponenti sho formuyut kompleks TSEN angl tRNA splicing endonuclease TSEN SEN 32 katalitichni subodinici TSEN2 ta TSEN34 j strukturni subodinici TSEN15 ta TSEN54 33 Ci subodinici vinikli vnaslidok kilkoh vipadkiv duplikaciyi geniv u hodi evolyuciyi yadernih iz podalshoyu specializaciyeyu kozhnoyi subodinici Sen2 ta Sen34 subodinici mayut najbilshij riven gomologiyi z nukleazami arhej 34 Procesing tRNK silno vidriznyayetsya u riznih organizmiv dlya kozhnogo iz p yati etapiv u hodi evolyuciyi vinikli rizni scenariyi dekilka mozhlivostej formuvannya 3 ta 5 kinciv dva riznih shlyahi splajsingu tRNK variaciyi u dodavanni CCA i mehanizmah kontrolyu yakosti tRNK Dodatkovimi variaciyami ye dekilka shlyahiv eksportu tRNK iz citoplazmi v yadro takozh buv vidkritij mehanizm importu tRNK v mitohondriyi 30 U mitohondriyah vsih organizmiv vidbuvayetsya vlasna translyaciya ale mitohondrialna DNK mistit ne vsi geni tRNK otzhe deyaki z nih povinni dostavlyatis spochatku z yadra v citoplazmu a dali iz citoplazmi v mitohondriyu nbsp BHB angl Bulge helix bulge motiv splajsingu tRNK Intron zafarbovanij chervonim kolorom sini krugi vkazuyut na nukleotidi antikodonu a chorni strilki pokazuyut misce nukleaznogo rozsheplennya 35 U bilshosti organizmiv osnovnim etapom virizannya intronu tRNK ye rozpiznavannya specifichnoyi strukturi BHB angl bulge helix bulge yaka ye markerom intron ekzonnogo perehodu i skladayetsya z takih chastin korotka poslidovnist nesparenih nukleotidiv potim spiral sformovana sparenimi nukleotidami za neyu znovu korotka poslidovnist nesparenih nukleotidiv div ilyustraciyu U chervonih vodorostej Cyanidioschyzon merolae en ye geni tRNK sho koduyut transkript iz dekilkoma intronami abo takimi intronami de 3 chastina koduyuchoyi poslidovnosti tRNK lezhit v 5 chastini gena Dlya procesingu takih pre tRNK kinci molekuli povinni buti zshiti u kilce i vzhe potim vidbuayetsya splajsing 36 Procesing rRNK RedaguvatiDokladnishe Ribosoma Dokladnishe Ribosomna RNKMolekuli rRNK formuyut korovij kompleks sercevinu ribosomi Utvorennya bilshosti variantiv pre rRNK vidbuvayetsya v yadercyah de mistitsya kilka tandemnih povtoriv geniv rRNK RNK polimeraza I en sintezuye z matrici DNK dovgij produkt policistronnu RNK angl polycistronic RNA pre rRNK Potim vona rozrizayetsya na okremi molekuli rRNK Na vidminu vid inshih tipiv rRNK 5S rRNK sintezuyutsya v yadri poza yadercem i cej proces katalizuye RNK polimeraza III en 37 38 Procesing rRNK duzhe konservativnij u bilshosti organizmiv i skladayetsya z takih stadij 39 transkripciyi pre rRNK u viglyadi dovgoyi policistronnoyi RNK ta dodatkovih okremih rRNK modifikaciyi dilyanok pre rRNK rozrizannya pre rRNK do zrilih rRNK formuvannya kompleksu z ribosomnimi bilkami v eukariotiv dodatkovi stadiyi vklyuchayut u sebe import ribosomnih bilkiv iz citoplazmi v yadro ta podalshij eksport ribosomnih subodinic u citoplazmu Modifikaciya ta splajsing pre rRNK vidbuvayetsya zavdyaki odnomu z tipiv nekoduyuchih RNK malim yadercevim RNK en myacRNK angl snoRNA sho vzayemodiyut iz malimi yadercevimi bilkami angl snoRNP v eukariotiv ta malimi ribonukleoproteyinami angl sRNP v arhej Potim 5 8 en ta 28S rRNK en vzayemodiyut iz kompleksom 5S rRNK ta L5 ribosomnim bilkom ta inshimi ribosomnimi bilkami i formuyut 60S subodinicyu u eukariot a 18S rRNK formuye 40S subodinicyu ribosomi 40S ta 60S ribosomni subodinici eksportuyutsya do citoplazmi de voni z yednuyutsya z mRNK i formuyut ribosomu 37 Procesing 5S rRNK u drizhdzhiv vidbuvayetsya za dopomogoyu ekzonukleaz Rex1p Rex2p j Rex3p ta Ro bilka 5S rRNK mozhe buti poliadenilovanna ta degradovana kompleksom ekzosomi 40 V arhej yaki najchastishe mayut odnu kopiyu kozhnogo gena mozhut buti bilshe nizh visim kopij geniv rRNK Geni rRNK transkribuyutsya policistronno v odnomu operoni ale u deyakih organizmiv takih yak H cutirubrum geni rRNK peremishani z genami tRNK v odnomu operoni Todi yak u Thermoproteus tenax en ta Desulfurococcus mobilis en 5S rRNK gen ne zakodovanij v odnomu operoni z inshimi rRNK vin povinen buti transkribovanij nezalezhno 41 Vidalennya introniv v arhej vidbuvayetsya zavdyaki nukleazam yaki specifichni do cogo domenu organizmiv i osnovnim momentom ye rozpiznavannya motivu sho ye markerom ekzon intronnogo perehodu BHB angl bulge helix bulge yak i u splajsingu tRNK div ilyustraciyu BHB motiv splajsingu tRNK 41 Procesing inshih nekoduyuchih RNK RedaguvatiDokladnishe Nekoduyuchi RNKNekoduyuchi RNK nkRNK ce funkcionalni RNK molekuli nukleotidna poslidovnist yakih ne perevoditsya v aminokislotnu poslidovnist bilkiv zvidsi i nazva voni ne koduyut bilki Funkciyi nkRNK polyagayut v regulyaciyi ekspresiyi geniv na riznih rivnyah transkripciya splajsing mRNK degradaciya translyaciya vpliv na strukturu hromatinu Nekoduyuchi RNK buvayut korotkimi abo malimi angl small ncRNA takimi yak mikroRNK chi piRNK ta dovgimi nkRNK sho bilshe za 200 nukleotidiv u dovzhinu napriklad Xist sho bere uchast v inaktivaciyi X hromosomi 42 Nekoduyuchi RNK sho berut uchast u RNK interferenciyi Redaguvati Dokladnishe RNK interferenciya nbsp Biogenez korotkih nekoduyuchih RNK 43 44 45 46 RNK interferenciya RNKi RNA interference RNAi mehanizm sho regulyuye ekspresiyu geniv v eukariotiv shlyahom degradaciyi cilevoyi mRNK ta abo priglushennya translyaciyi U RNKi berut uchast dvolancyugovi mali nekoduyuchi RNK sho mozhut pohoditi z geniv nekoduyuchih chastin DNK antisens RNK chi invertovanih povtoriv en Takozh mali nkRNK mozhut potraplyati v klitinu ekzogenno z virusiv prizvodyachi do klitinnoyi zagibeli shlyahom apoptozu sposobu pozbavitisya zarazhenih klitin v organizmi 47 Taki korotki nekoduyuchi RNK sintezuyutsya u viglyadi prekursoriv poperednikiv yaki povinni projti stadiyu procesingu dlya togo shob sformuvati zrili funkcionalni RNK yaki budut vzayemodiyati z RNK indukovanim kompleksom zaglushennya RISC angl RNA induced silencing complex i vplivati na ekspresiyu cilovih geniv Procesing mikroRNK Redaguvati Dokladnishe MikroRNKMikroRNK pohodyat iz chastin DNK yaki mozhut koduvati vlasne lishe mikroRNK iz mikroRNK klasteriv mozhut mistitisya v intronah geniv sho koduyut bilki ta buti mitronami chastinami introniv mRNK sho procesuyutsya za dopomogoyu splajsosomi ta kompleksu ekzosoma a ne fermentu Drosha 48 Odrazu pislya transkripciyi mikroRNK prekursori nazivayutsya pri mikroRNK i mayut svoyu vlasnu harakternu strukturu steblo petlya angl stem loop zi shpilkoyu otochenoyu poslidovnistyu dvolancyugovoyi RNK Pri mikroRNK rozpiznayetsya fermentom Drosha yakij vidrizaye nukleotidi po bokah vid strukturi steblo petlya formuyuchi pre mikroRNK dovzhinoyu priblizno 70 nukleotidiv 48 Pre mikroRNK perenositsya z yadra do citoplazmi za dopomogoyu eksportinu 5 49 U citoplazmi ferment Dajser vidrizaye shpilkovu chastinu pre mikroRNK formuyuchi dvolancyugovu ne povnistyu komplementarno zv yazanu strukturu dovzhinoyu 21 24 nukleotidi mikroRNK mikroRNK z zirochkoyu Dali bilok rodini Argonavt obiraye mikroRNK z dupleksa a mikroRNK degraduyetsya Zrila mikroRNK vzayemodiye z RISC i prizvodit do degradaciyi zaglushennya translyaciyi iz cilovoyi mRNK do yakoyi dana mikroRNK chastkovo komplementarna Sajti vzayemodiyi z mikroRNK chastishe lezhat u 3 netranslovanij dilyanci mRNK angl 3 UTR ale takozh i v yih ekzonah 50 Procesing miRNK Redaguvati Dokladnishe Mali interferuyuchi RNKMali interferuyuchi RNK vpershe buli vivcheni na roslinah yak pohidni virusiv Zaraz zrozumilo sho miRNK v eukariotiv pohodyat iz riznih chastin genomu i mozhut buti ekzogennogo pohodzhennya Biogenez miRNK zalezhit vid togo chi dlya cogo neobhidna RNK zalezhna RNK polimeraza 51 U tvarin miRNK formuyutsya z dvolancyugovih RNK dlRNK angl dsRNA U citoplazmi abo yadri Dajser vikonuye rozrizannya dlRNK na miRNK dupleks dovzhinoyu 20 25 nukleotidiv iz 2 nukleotidami nesparenimi na 3 kinci ta 5 monofosfatom Odin iz dvoh lancyugiv miRNK dupleksu vzayemodiye z bilkom simejstva Argonavt i cej kompleks prizvodit do RNK indukovanogo zaglushennya geniv za uchasti RISC 46 U roslin ta cherviv formuvannya miRNK zalezhit vid RNK zalezhnoyi RNK polimerazi RdRP U roslin formuyetsya prekursor miRNK drugij komplementarnij lancyug yakogo sintezuyetsya za dopomogoyu RdRP U rezultati dvolancyugova RNK rozrizayetsya za dopomogoyu Dajsera na miRNK yaki metilyuyutsya fermentom HEN1 i vzayemodiyut iz bilkami rodini Argonavt 51 U Caenorhabditis elegans prekursori miRNK formuyutsya z dovgih dvolancyugovih RNK za dopomogoyu fermentu Dajser DCR 1 i vzayemodiyut iz bilkom rodini Argonavt Takij kompleks z yednuyetsya iz cilovoyu mRNK i za dopomogoyu RNK zalezhnoyi RNK polimerazi sintezuyutsya vtorinni miRNK z 5 trifosfatnimi kincyami 51 Riznicya mizh funkcionuvannyam malih interferuyuchih RNK ta mikroRNK ce povna chi nepovna komplementarnist danoyi nkRNK do poslidovnosti mRNK vidpovidno Pri vzayemodiyi mikroRNK z mRNK deyaki nukleotidi zalishayutsya nesparenimi Vvazhayetsya sho miRNK v prirodi chastishe zustrichayutsya u roslin 52 Procesing piRNK Redaguvati Dokladnishe piRNKBilshist bilkiv simejstva Argonavt vzayemodiyut yak iz miRNK tak i z mikroRNK ale ye pidrodina PIWI angl P element induced wimpy testis sho specifichno funkcionuye z piRNK dlya zaglushennya aktivnosti transpozoniv 52 Zchituyutsya piRNK z piRNK klasteriv abo aktivnih transpozoniv Obidva vidi transkriptiv dosit dovgi i dlya dozrivannya potrebuyut procesingu Najkrashe cej proces vivchenij u plodovoyi muhi Drosophila melanogaster Pervinnih shlyah procesingu piRNK ne do kincya z yasovanij vikonuyetsya skorishe za vse za dopomogoyu nukleazi Zucchini Zuc pislya rozrizannya takij prekursor piRNK vzayemodiye z Piwi chi Aubergine Aub U comu procesi she berut uchast bilok teplovogo shoku 83 Hsp83 ta Shutdown Shu U rezultati formuyetsya zrila piRNK antisensna transkriptu aktivnogo transpozonu Taka piRNK vstupaye v Ping pong cikl u yakomu vona z yednuyetsya iz transkriptom transpozonu sens i za dopomogoyu Piwi chi Aubergine Aub rozrizaye jogo na zrilu piRNK sens Potim cikl prodovzhuyetsya koli sens piRNK ta bilok simejstva Argonavt zv yazuyutsya z antisensnim transkriptom z piRNK klasteriv i rozrizayut jogo do dovzhini zriloyi piRNK antisens Ping pong cikl povtoryuyetsya div ilyustraciyu Biogenez korotkih nekoduyuchih RNK 44 Dovgi nekoduyuchi RNK Redaguvati nbsp Priklad vtorinnoyi strukturi bakterialnoyi dovgoyi nkRNK OLE angl ornate large extremophilic zi shpilkami chastinami povnoyi ta nepovnoyi komplementarnosti psevdovuzlami Dokladnishe Dovgi nekoduyuchi RNKDovgi nekoduyuchi RNK dnRNK angl lncRNA ce velikij klas RNK sho harakterizuyetsya dovzhinoyu bilshe za 200 nukleotidiv ta vidsutnistyu vidkritoyi ramki zchituvannya v yih poslidovnosti tobto yihnya nukleotidna poslidovnist ne ye kodom dlya aminokislotnoyi poslidovnosti bilkiv Dovgi nekoduyuchi RNK mayut bagato spilnih ris iz mRNK hocha yihnij biogenez ne tak dobre vivchenij voni chasto sintezuyutsya za dopomogoyu RNK polimerazi II poliadeniluyutsya ta prohodyat splajsing i navit alternativnij splajsing 52 Pri comu deyaki specifichni dnRNK yaki znahodyatsya dovgij chas u yadri prote ne mayut klasichnogo poliadeniluvannya zazvichaj mayut inshi strukturi yaki zabezpechuyut stabilnist Napriklad dnRNK MALAT1 en maye cikavu tri lancyugovu strukturu de i 5 i 3 kincevi dilyanki znahodyatsya vseredini i ne pidlyagayut nukleaznij degradaciyi 53 DnRNK mozhut buti zakodovani v genomi yak u sens tak i v antisens napryamkah vidnosno geniv sho koduyut bilki mozhut znahoditisya v intronah geniv abo buti mizhgennimi 54 Na 2014 rik identifikovano ponad 10000 mizhgennih dovgih nekoduyuchih RNK i bagato intronnih Dovgi nekoduyuchi RNK ekspresuyutsya na nizhchih rivnyah nizh proteyin koduyuchi RNK mRNK takozh voni chasto ye tkanino specifichnimi 55 Funkciyi dnRNK slabko vivcheni ale deyaki z nih regulyuyut rivni transkripciyi pevnih geniv shlyahom bezposerednogo zv yazuvannya z faktorami transkripciyi abo zavdyaki epigenetichnim mehanizmam regulyaciyi ekspresiyi geniv 56 Dovgi nekoduyuchi RNK piddayutsya nukleotidnim modifikaciyam takim yak metilyuvannya citozinu ta adeninu Bagato iz cih posttranskripcijnih modifikacij ye obernenimi i skorishe za vse regulyuyut funkciyi dnRNK 57 Zdatnist dovgih nekoduyuchih RNK zgortatisya u vtorinnu ta tretinnu strukturi ye osnovnoyu harakternoyu risoyu funkcionuvannya cogo klasu nekoduyuchih RNK U strukturi dnRNK ye shpilki chastini povnoyi ta nepovnoyi komplementarnosti psevdovuzli sho prizvodyat do formuvannya pevnoyi 3D modeli zi spiralyami yaki znahodyatsya paralelno chi perpendikulyarno odna do odnoyi strukturi yaki pevnim chinom analogichni elementam vtorinnoyi strukturi bilkiv Taki strukturi vvazhayetsya i nadayut dovgim nekoduyuchim RNK mozhlivist vikonuvati svoyi funkciyi 57 Redaguvannya ta modifikaciyi RNK RedaguvatiRedaguvannya RNK Redaguvati nbsp Dezaminuvannya citozinu Dokladnishe Redaguvannya RNKRedaguvannya RNK ce proces pri yakomu okremi nukleotidi zaminyuyutsya na inshi v molekuli RNK Takozh do redaguvannya RNK vidnosyat vstavki ta virizannya nukleotidiv RNK sho ne ye rezultatom splajsingu Redaguvannya RNK zminyuye informaciyu zakodovanu v molekuli RNK i yaksho ce vidbuvayetsya v koduyuchij dilyanci matrichnoyi RNK to bilok sho z neyi bude zchituvatisya bude mistiti inshu aminokislotu U tomu vipadku yaksho dodayetsya vidrizayetsya nukleotid bude vidbuvatisya zsuv ramki zchituvannya en sho prizvede do kardinalnoyi zmini aminokislot bilka abo degradaciya mRNK 58 U procesi redaguvannya RNK chasto berut uchast bagato riznih bilkiv ta inodi takozh nekoduyuchih RNK 58 Redaguvannya RNK prisutnye u bagatoh riznih organizmiv U roslin cej proces vidbuvayetsya v mitohondriyah i plastidah U plastidah kvitkovih roslin vid 30 do 40 citoziniv zminyuyutsya na uracili todi yak u paporotej ta mohopodibnih cya cifra mozhe dosyagati dekilkoh soten Mitohondrialna DNK kvitkovih roslin zminyuye priblizno 450 citoziniv na uracili i v osnovnomu cej proces stosuyetsya mRNK ale u nizhchih roslin C U redaguvannya RNK vidbuvayetsya chastishe do 2000 nukleotidiv i mozhe prohoditi u zvorotnomu napryamku 58 U lyudini najchastishe vidbuvayetsya zmina adenozinu na inozin A na I sho vidbuvayetsya za dopomogoyu sim yi fermentiv Adenozin dezaminazi RNK angl ADAR ADAR zdatni do z yednannya iz dvolancyugovimi molekulami RNK i dezaminuvati pribrati amino grupu NH2 adenozin do inozinu Inozin rozshifrovuyetsya inshimi fermentami v osnovnomu yak guanozin A na I redaguvannya RNK chasto vidbuvayetsya v transpozonah takih yak Alu povtori tomu sho voni zdatni formuvati bagato dvolancyugovih RNK todi yak bulo zafiksovano lishe dekilka desyatkiv vipadkiv redaguvannya RNK v nepovtoryuvalnih elementah genomu takih yak geni sho koduyut bilki i bilshist iz nih stosuyutsya tkanin nervovoyi sistemi 59 Inshim vidom redaguvannya RNK u lyudini ye zmina C na U yaka vikonuyetsya za dopomogoyu inshih dezaminaz APOBEC Ale takij vid redaguvannya RNK ne ye rozpovsyudzhenim i vidbuvayetsya perevazhno v enterocitah tonkogo kishechniku 60 ta v deyakih inshih klitinah monociti Redaguvannya RNK ye dodatkovim mehanizmom zbilshennya riznomanittya RNK a takozh sposobom kontrolyu yihnogo rivnya adzhe redaguvannya mozhe prizvoditi do degradaciyi molekuli RNK Modifikaciyi RNK Redaguvati Pid chas dozrivannya RNK rizni fermenti mozhut himichno zminyuvati ribonukleotidi en Taki zmini mozhut vidbuvatisya yak v azotistih osnovah tak i v 2 polozhenni ribozi chi odnochasno i tam i tam Takozh ye modifikaciyi yaki vidbuvayutsya u dekilka etapiv poza molekuloyu RNK a potim priyednuyutsya do RNK za dopomogoyu reakciyi nukleotidnoyi zamini Prikladom takoyi reakciyi ye kepuvannya v deyakih virusiv do mRNK priyednuyetsya vzhe metilovanij guanozin metilyuvannya yakogo projshlo na molekuli GTF 61 Na sogodni vidomo ponad 100 riznih himichnih modifikacij RNK hocha funkciyi bilshosti z nih zalishayutsya nevidomimi 62 Oskilki RNK molekuli yak vvazhalosya porivnyano ne dovgo isnuyut u klitini na sogodni perevazhaye dumka sho modifikaciyi ribonukleotidiv ne dovgovichni i pislya kovalentnogo z yednannya himichnoyi grupi vona vzhe ne vid yednuyetsya Ale ye deyaki vidomosti pochinayuchi iz 2011 roku pro obernene metilyuvannya adenozinu RNK m6A 62 Najbilsh redagovanimi z vidiv RNK ye transportni RNK priblizno odin iz p yati nukleotidiv tRNK ye modifikovanim takozh vidomo bilshe 50 riznih vidiv modifikacij nukleotidiv tRNK 63 Cikavim ye te sho antikodonova petlya ye mishennyu bagatoh modifikacij nukleotidiv pri chomu ce zalezhit vid togo yaku aminokislotu i vidpovidno yakij antikodon mistit dana tRNK Oskilki poslidovnosti antikodonovih nukleotidiv rizni riznimi buvayut modifikaciyi tih nukleotidiv yaki otochuyut antikodon 34 ij i 37 ij nukleotidi najchastishe modifikuyutsya ale voni zabezpechuyut strukturnu vidkritist antikodonu i zbilshuyut kodon antikodonove vpiznannya 63 Modifikaciyi uridinu Redaguvati nbsp Sintez psevdouridinuPsevdouridin PS Modifikaciya RNK yaka zustrichayetsya najchastishe ce izomerizaciya uridinu na psevdouridin PS Psevdouridin na vidminu vid uridinu zdaten formuvati dodatkovij vodnevij zv yazok tomu taka modifikaciya prizvodit do zbilshennya strukturnoyi stabilnosti molekuli RNK para U A legshe rozplitayetsya nizh para PS A 24 Tak u drizhdzhiv pri teplovomu shoci bilshist molekul RNK degraduyut za dopomogoyu ekzosomalnogo kompleksu prote ti yaki mayut na svoyemu 3 kinci psevdouridin girshe plavlyatsya i ye bilsh stabilni oskilki ekzosomi treba mati vilnij odnolancyugovij 3 kinec dlya nukleaznoyi aktivnosti 24 U drizhdzhiv psevdouridin nayavnij u 46 pozicij chotiroh rRNK 25S 18S 5 8S ta 5S ta u shesti poziciyah u malih yadernih RNK U1 en U2 en ta U5 en Transportna RNK otrimuye peretvorenij uridin u psevdouridinovij petli za dopomogoyu specialnih fermentiv psevdouridin sintaz angl pseudouridine synthase PUS Lyudini maye 23 bilki z domenom psevdouridin sintazi ale voni ne vivcheni do kincya U veresni 2014 roku Schwartz ta spivavtori vipustili u zhurnali Cell stattyu pro nayavnist psevdouridinu v molekulah mRNK ta malih yadernih RNK yak drizhdzhiv tak i lyudini ta zaproponuvali metodiku sekvenuvannya PS Seq dlya viyavlennya psevdouridiniv u cilih transkriptomah 64 Modifikaciyi adenozinu Redaguvati nbsp nbsp nbsp Adenozin N6 metiladenozin N1 metiladenozinAdenozin ta jogo modifikaciyi N6 metiladenozin m6A Dana modifikaciya ye najbilsh rozpovsyudzhenoyu z usih modifikacij mRNK eukariot i vona stanovit priblizno 80 zminenih nukleotidiv mRNK 24 Modifikaciya m6A zustrichayetsya v 3 netranslovanij dilyanci mRNK Eksperimentalne viklyuchennya fermentiv sho dodayut m6A prizvodit do porushennya splajsingu soten geniv sho daye pidstavi vvazhati sho dana modifikaciya vplivaye na splajsing 24 Prisutnist odnogo modifikovanogo m6A v 5 netranslovanij dilyanci dozvolyaye zapustiti kep nezalezhnu transkripciyu mRNK teplovogo shoku HSP70 todi yak kep zalezhna transkripciya zaglushuyetsya pid chas teplovogo shoku 24 Takozh m6A zustrichayetsya v intronah 24 N1 metiladenozin m1A N1 metiladenozin vnosit pozitivnij zaryad u Votson Krikivsku vzayemodiyu takim chinom dana modifikaciya mozhe silno zminiti vtorinnu strukturu RNK chi vzayemodiyu RNK z bilkami 63 Bilshist transkriptiv yaki mayut N1 metiladenozin mistyat lishe odin sajt m1A v 5 netranslovanij dilyanci Taki mRNK mayut zazvichaj bilshu stabilnist i vishij riven translyaciyi 24 Modifikaciyi citozinu Redaguvati nbsp nbsp nbsp Citozin 5 Metilcitozin 5 GidroksimetilcitozinCitozin ta jogo modifikaciyi 5 metilcitozin m5C ta 5 gidroksimetilcitozin hm5C 5 Metilcitozin bere uchast u regulyaciyi translyaciyi zalezhno vid togo v yakij chastini mRNK roztashovanij cej modifikovanij nukleotid Tak prisutnist m5C u 3 netranslovanomu regioni CDK1 mRNK zbilshuye riven translyaciyi a u 5 NTR mRNK CDKN1B navpaki znizhuye Takij mehanizm dopomagaye regulyuvati klitinnij cikl 24 Peretvorennya 5 metilcitozinu na 5 gidroksimetilcitozin vidbuvayetsya za dopomogoyu fermentiv metilcitozin deoksigenaz Taka modifikaciya v plodovih muh korilyuye iz prisutnistyu poliribosom 24 Modifikaciyi ribozi Redaguvati nbsp nbsp Uridin 2 O metiluridin2 O metiluvannya ribozi v uridinovomu nukleozidi 2 OMeOsnovnoyu vivchenoyu modifikaciyeyu cukru RNK ye metilyuvannya u 2 poziciyi zalishku ribozi 2 OMe en OH grupa u polozhenni 2 C zaminyuyetsya na OCH3 Taka modifikaciya zagalom zbilshuye stabilnist strukturi RNK 65 Porushennya procesingu RNK ta hvorobi RedaguvatiNormalne funkcionuvannya klitin zalezhit vid suvorogo kontrolyu rivnya ekspresiyi yak RNK sho koduyut bilki tak i nekoduyuchih RNK Taki RNK berut uchast u transkripciyi procesingu ta translyaciyi pidtrimanni dovzhini telomer ta bagatoh inshih podiyah u klitini Oskilki procesing RNK vklyuchaye v sebe dozrivannya molekuli RNK vid tiyeyi formi sho zakodovana v molekuli DNK do zriloyi funkcionalnoyi RNK to porushennya cogo procesu mozhe viklikati zahvoryuvannya Tak pri viniknenni izoform mRNK napriklad u rezultati mutacij yaki prizvodyat do aktivaciyi inshogo sajtu splajsingu bilki yaki zchituyutsya z takih matric mozhut mati inshij aminokislotnij sklad abo buti konformacijno nestabilnimi sho prizvodit do nezdatnosti bilka vikonuvati svoyi funkciyi 66 Prikladiv alternativnogo splajsingu yakij prizvodit do zahvoryuvan ye bezlich Tak pri ataksiyi teleangiektaziyi sindrom Luyi Bar nejrodegenerativnomu zahvoryuvanni zi shilnistyu do zloyakisnih novoutvoren deleciya 4 nukleotidiv u 20 mu introni gena ATM angl ataxia telengiectasia mutated prizvodit do aktivaciyi alternativnogo splajsingu ta sprichinyuye rozvitok zahvoryuvannya 67 RNK isnuyut u klitinah u zv yazanomu z bilkami stani u viglyadi tak zvanih ribonukleoproteyinovih kompleksiv RNP angl RNP sho skladayutsya z odniyeyi abo bilshe molekul RNK ta najchastishe bagatoh RNK zv yazuyuchih bilkiv en angl RNA binding proteins RBP RNABP 68 Vlasne vikonannya vidpovidnimi RNK svoyih funkcij vidbuvayetsya v takih ribonukleoproteyinovih kompleksah i yih normalna aktivnist zalezhit vid chitkogo roztashuvannya bilkovih struktur vidnosno tretinnoyi strukturi RNK Zboyi pid chas procesingu yak vidpovidnih nekoduyuchih RNK tak i mRNK sho koduyut ci bilki mozhut prizvesti do porushennya utvorennya cih kompleksiv 68 Napriklad RNK zv yazuyuchi bilki sho v normalnih umovah berut uchast u regulyaciyi splajsingu formuyut netipovi agregati pri hvorobi Parkinsona ta pri amiotrofichnomu bichnomu sklerozi 11 Cikavim vipadkom ye sinonimichni mutaciyi taki mutaciyi v geni sho pripadayut na koduyuchu dilyanku RNK i ne prizvodyat do zmini aminokisloti sho voni koduyut Napriklad GGT GGA ta GGG koduyut odnu aminokislotu glicin Pri tochkovij mutaciyi gena v tretomu polozheni cogo kodonu GG napriklad GGA GGC aminokislota sho koduyetsya takoyu mRNK ne zminitsya ce vse odno bude glicin zvidsi i nazva mutaciyi sinonimichna adzhe v danomu vipadku A sinonimichnij C Dovgij chas vvazhalosya sho sinonimichni mutaciyi ne prizvodyat do bud yakogo vplivu na funkcionuvannya klitini Odnak u deyakih vipadkah do 25 takih sinonimichnih mutacij mozhut vplivati na vzayemodiyu zi splajsosomoyu i prizvoditi do alternativnogo splajsingu 68 Div takozh RedaguvatiEkspresiya geniv Degradaciya RNK Epigenetika Epigenetichnij kod Regulyatorni poslidovnosti Operon Antisensovi RNK Posttranslyacijna modifikaciyaPrimitki Redaguvati a b A V Sivolob 2008 Molekulyarna biologiya K Vidavnicho poligrafichnij centr Kiyivskij universitet s a 201 220 b 207 208 Arhiv originalu za 4 bereznya 2016 Procitovano 20 chervnya 2014 a b v g David L Bentley March 2014 Coupling mRNA processing with transcription in time and space Nature reviews Genetics 15 3 163 175 PMID 24514444 doi 10 1038 nrg3662 Takayuki Ohira amp Tsutomu Suzuki June 2011 Retrograde nuclear import of tRNA precursors is required for modified base biogenesis in yeast Proceedings of the National Academy of Sciences of the United States of America 108 26 10502 10507 PMID 21670254 doi 10 1073 pnas 1105645108 a b v g Alberto R Kornblihtt Ignacio E Schor Mariano Allo Gwendal Dujardin Ezequiel Petrillo amp Manuel J Munoz March 2013 Alternative splicing a pivotal step between eukaryotic transcription and translation Nature reviews Molecular cell biology 14 3 153 165 PMID 23385723 doi 10 1038 nrm3525 Diana Y Vargas Khyati Shah Mona Batish Michael Levandoski Sourav Sinha Salvatore A E Marras Paul Schedl amp Sanjay Tyagi November 2011 Single molecule imaging of transcriptionally coupled and uncoupled splicing Cell 147 5 1054 1065 PMID 22118462 doi 10 1016 j cell 2011 10 024 Schmid Manfred Jensen Torben Heick 08 2018 Controlling nuclear RNA levels Nature Reviews Genetics 19 8 s 518 529 ISSN 1471 0064 PMID 29748575 doi 10 1038 s41576 018 0013 2 Zlotorynski Eytan 2016 RNA metabolism Co transcriptional splicing at nucleotide resolution Nature Reviews Molecular Cell Biology 17 5 264 265 ISSN 1471 0072 doi 10 1038 nrm 2016 44 Michael Hiller Klaus Huse Matthias Platzer amp Rolf Backofen 2005 Creation and disruption of protein features by alternative splicing a novel mechanism to modulate function Genome biology 6 7 R58 PMID 15998447 doi 10 1186 gb 2005 6 7 r58 Bradley E Bernstein Ewan Birney Ian Dunham Eric D Green Chris Gunter amp Michael Snyder September 2012 An integrated encyclopedia of DNA elements in the human genome Nature 489 7414 57 74 PMID 22955616 doi 10 1038 nature11247 Qun Pan Ofer Shai Leo J Lee Brendan J Frey amp Benjamin J Blencowe December 2008 Deep surveying of alternative splicing complexity in the human transcriptome by high throughput sequencing Nature genetics 40 12 1413 1415 PMID 18978789 doi 10 1038 ng 259 a b v Xiang Dong Fu amp Manuel Jr Ares August 2014 Context dependent control of alternative splicing by RNA binding proteins Nature reviews Genetics PMID 25112293 doi 10 1038 nrg3778 a b v Baralle Francisco E Giudice Jimena July 2017 Alternative splicing as a regulator of development and tissue identity Nature Reviews Molecular Cell Biology 18 7 s 437 451 ISSN 1471 0080 PMID 28488700 doi 10 1038 nrm 2017 27 Arhiv originalu za 26 sichnya 2018 Procitovano 17 zhovtnya 2017 Bilok NOVA 1 lyudini v databazi UniProt P51513 Bilok PTB lyudini v bazi danih UniProt P26599 Kian Huat Lim Luciana Ferraris Madeleine E Filloux Benjamin J Raphael amp William G Fairbrother July 2011 Using positional distribution to identify splicing elements and predict pre mRNA processing defects in human genes Proceedings of the National Academy of Sciences of the United States of America 108 27 11093 11098 PMID 21685335 doi 10 1073 pnas 1101135108 a b v Ran Elkon Alejandro P Ugalde amp Reuven Agami July 2013 Alternative cleavage and polyadenylation extent regulation and function Nature reviews Genetics 14 7 496 506 PMID 23774734 doi 10 1038 nrg3482 a b Laure Weill Eulalia Belloc Felice Alessio Bava amp Raul Mendez June 2012 Translational control by changes in poly A tail length recycling mRNAs Nature structural amp molecular biology 19 6 577 585 PMID 22664985 doi 10 1038 nsmb 2311 a b v g d Dafne Campigli Di Giammartino Kensei Nishida amp James L Manley September 2011 Mechanisms and consequences of alternative polyadenylation Molecular cell 43 6 853 866 PMID 21925375 doi 10 1016 j molcel 2011 08 017 Susan Carpenter Emiliano P Ricci Blandine C Mercier Melissa J Moore amp Katherine A Fitzgerald June 2014 Post transcriptional regulation of gene expression in innate immunity Nature reviews Immunology 14 6 361 376 PMID 24854588 doi 10 1038 nri3682 Katarzyna Oktaba Wei Zhang Thea Sabrina Lotz David Jayhyun Jun Sandra Beatrice Lemke Samuel Pak Ng Emilia Esposito Michael Levine amp Valerie Hilgers December 2014 ELAV Links Paused Pol II to Alternative Polyadenylation in the Drosophila Nervous System Molecular cell PMID 25544561 doi 10 1016 j molcel 2014 11 024 Zlotorynski Eytan 2015 RNA metabolism Promoters drive alternative polyadenylation Nature Reviews Molecular Cell Biology 16 2 66 66 ISSN 1471 0072 doi 10 1038 nrm3940 Zlotorynski Eytan 2015 RNA 3 UTR alternatives to protein localization Nature Reviews Molecular Cell Biology 16 6 327 327 ISSN 1471 0072 doi 10 1038 nrm3996 Yang Li Duff Michael O Graveley Brenton R Carmichael Gordon G Chen Ling Ling 16 lyutogo 2011 Genomewide characterization of non polyadenylated RNAs Genome Biology 12 s R16 ISSN 1474 760X doi 10 1186 gb 2011 12 2 r16 a b v g d e zh i k l Lewis Cole J T Pan Tao Kalsotra Auinash March 2017 RNA modifications and structures cooperate to guide RNA protein interactions Nature Reviews Molecular Cell Biology 18 3 s 202 210 ISSN 1471 0080 PMC PMC5542016 PMID 28144031 doi 10 1038 nrm 2016 163 Arhiv originalu za 26 sichnya 2018 Procitovano 11 zhovtnya 2017 a b v g d William F Marzluff Eric J Wagner amp Robert J Duronio November 2008 Metabolism and regulation of canonical histone mRNAs life without a poly A tail Nature reviews Genetics 9 11 843 854 PMID 18927579 doi 10 1038 nrg2438 Bilok ZFP100 lyudini UniProt Q8WTR7 Bilok LSM11 lyudini UniProt P83369 Bilok LSM10 lyudini UniProt Q969L4 A V Sivolob S R Rushkovskij S S Kir yachenko ta in 2008 Genetika K Vidavnicho poligrafichnij centr Kiyivskij universitet s 57 58 Arhiv originalu za 4 bereznya 2016 Procitovano 16 lipnya 2014 a b Anita K Hopper amp Eric M Phizicky January 2003 tRNA transfers to the limelight Genes amp development 17 2 162 180 PMID 12533506 doi 10 1101 gad 1049103 Liande Li Weifeng Gu Chunyang Liang Qinghua Liu Craig C Mello amp Yi Liu August 2012 The translin TRAX complex C3PO is a ribonuclease in tRNA processing Nature structural amp molecular biology 19 8 824 830 PMID 22773104 doi 10 1038 nsmb 2337 Toshikatsu Hanada Stefan Weitzer Barbara Mair Christian Bernreuther Brian J Wainger Justin Ichida et al March 2013 CLP1 links tRNA metabolism to progressive motor neuron loss Nature 495 7442 474 480 PMID 23474986 doi 10 1038 nature11923 Birgit S Budde Yasmin Namavar Peter G Barth et al September 2008 tRNA splicing endonuclease mutations cause pontocerebellar hypoplasia Nature genetics 40 9 1113 1118 PMID 18711368 doi 10 1038 ng 204 Christopher R Trotta Sergey V Paushkin Meenal Patel Hong Li amp Stuart W Peltz May 2006 Cleavage of pre tRNAs by the splicing endonuclease requires a composite active site Nature 441 7091 375 377 PMID 16710424 doi 10 1038 nature04741 Markus Englert amp Hildburg Beier 2005 Plant tRNA ligases are multifunctional enzymes that have diverged in sequence and substrate specificity from RNA ligases of other phylogenetic origins Nucleic acids research 33 1 388 399 PMID 15653639 doi 10 1093 nar gki174 Akiko Soma Junichi Sugahara Akinori Onodera Nozomu Yachie et al 2013 Identification of highly disrupted tRNA genes in nuclear genome of the red alga Cyanidioschyzon merolae 10D Scientific reports 3 2321 PMID 23900518 doi 10 1038 srep02321 a b Francois Michel Boisvert Silvana van Koningsbruggen Joaquin Navascues amp Angus I Lamond July 2007 The multifunctional nucleolus Nature reviews Molecular cell biology 8 7 574 585 PMID 17519961 doi 10 1038 nrm2184 Jan van Riggelen Alper Yetil amp Dean W Felsher April 2010 MYC as a regulator of ribosome biogenesis and protein synthesis Nature reviews Cancer 10 4 301 309 PMID 20332779 doi 10 1038 nrc2819 D L Lafontaine amp D Tollervey July 2001 The function and synthesis of ribosomes Nature reviews Molecular cell biology 2 7 514 520 PMID 11433365 doi 10 1038 35080045 Martin Ciganda amp Noreen Williams July August 2011 Eukaryotic 5S rRNA biogenesis Wiley interdisciplinary reviews RNA 2 4 523 533 PMID 21957041 doi 10 1002 wrna 74 a b W S Vincent Yip Nicholas G Vincent amp Susan J Baserga 2013 Ribonucleoproteins in archaeal pre rRNA processing and modification Archaea 2013 614735 PMID 23554567 doi 10 1155 2013 614735 Taiping Chen amp Sharon Y R Dent February 2014 Chromatin modifiers and remodellers regulators of cellular differentiation Nature reviews Genetics 15 2 93 106 PMID 24366184 doi 10 1038 nrg3607 Deborah Bourc his amp Olivier Voinnet October 2010 A small RNA perspective on gametogenesis fertilization and early zygotic development Science 330 6004 617 622 PMID 21030645 doi 10 1126 science 1194776 a b Maartje J Luteijn amp Rene F Ketting August 2013 PIWI interacting RNAs from generation to transgenerational epigenetics Nature reviews Genetics 14 8 523 534 PMID 23797853 doi 10 1038 nrg3495 Irfan A Qureshi amp Mark F Mehler August 2012 Emerging roles of non coding RNAs in brain evolution development plasticity and disease Nature reviews Neuroscience 13 8 528 541 PMID 22814587 doi 10 1038 nrn3234 a b Stephane E Castel amp Robert A Martienssen February 2013 RNA interference in the nucleus roles for small RNAs in transcription epigenetics and beyond Nature reviews Genetics 14 2 100 112 PMID 23329111 doi 10 1038 nrg3355 Eleanor White Margarita Schlackow Kinga Kamieniarz Gdula Nick J Proudfoot amp Monika Gullerova June 2014 Human nuclear Dicer restricts the deleterious accumulation of endogenous double stranded RNA Nature structural amp molecular biology 21 6 552 559 PMID 24814348 doi 10 1038 nsmb 2827 a b Eugene Berezikov December 2011 Evolution of microRNA diversity and regulation in animals Nature reviews Genetics 12 12 846 860 PMID 22094948 doi 10 1038 nrg3079 Susanne Rother amp Gunter Meister November 2011 Small RNAs derived from longer non coding RNAs Biochimie 93 11 1905 1915 PMID 21843590 doi 10 1016 j biochi 2011 07 032 Amy E Pasquinelli April 2012 MicroRNAs and their targets recognition regulation and an emerging reciprocal relationship Nature reviews Genetics 13 4 271 282 PMID 22411466 doi 10 1038 nrg3162 a b v Benjamin Czech amp Gregory J Hannon January 2011 Small RNA sorting matchmaking for Argonautes Nature reviews Genetics 12 1 19 31 PMID 21116305 doi 10 1038 nrg2916 a b v Kevin V Morris amp John S Mattick June 2014 The rise of regulatory RNA Nature reviews Genetics 15 6 423 437 PMID 24776770 doi 10 1038 nrg3722 Brown Jessica A Bulkley David Wang Jimin Valenstein Max L Yario Therese A Steitz Thomas A Steitz Joan A 2014 7 Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix Nature Structural amp Molecular Biology 21 7 s 633 640 ISSN 1545 9985 PMC 4096706 PMID 24952594 doi 10 1038 nsmb 2844 Arhiv originalu za 12 listopada 2018 Procitovano 20 listopada 2019 S W Cheetham F Gruhl J S Mattick amp M E Dinger June 2013 Long noncoding RNAs and the genetics of cancer British journal of cancer 108 12 2419 2425 PMID 23660942 doi 10 1038 bjc 2013 233 Keith W Vance amp Chris P Ponting August 2014 Transcriptional regulatory functions of nuclear long noncoding RNAs Trends in genetics TIG 30 8 348 355 PMID 24974018 doi 10 1016 j tig 2014 06 001 Martin Turner Alison Galloway amp Elena Vigorito June 2014 Noncoding RNA and its associated proteins as regulatory elements of the immune system Nature immunology 15 6 484 491 PMID 24840979 doi 10 1038 ni 2887 a b Tim R Mercer amp John S Mattick March 2013 Structure and function of long noncoding RNAs in epigenetic regulation Nature structural amp molecular biology 20 3 300 307 PMID 23463315 doi 10 1038 nsmb 2480 a b v Mizuki Takenaka amp Axel Brennicke November 2012 Using multiplex single base extension typing to screen for mutants defective in RNA editing Nature protocols 7 11 1931 1945 PMID 23037308 doi 10 1038 nprot 2012 117 Gokul Ramaswami Rui Zhang Robert Piskol Liam P Keegan Patricia Deng Mary A O Connell amp Jin Billy Li February 2013 Identifying RNA editing sites using RNA sequencing data alone Nature methods 10 2 128 132 PMID 23291724 doi 10 1038 nmeth 2330 Gokul Ramaswami Wei Lin Robert Piskol Meng How Tan Carrie Davis amp Jin Billy Li June 2012 Accurate identification of human Alu and non Alu RNA editing sites Nature methods 9 6 579 581 PMID 22484847 doi 10 1038 nmeth 1982 Magdalena A Machnicka Kaja Milanowska Okan Osman Oglou Elzbieta Purta et al January 2013 MODOMICS a database of RNA modification pathways 2013 update Nucleic acids research 41 Database issue D262 D267 PMID 23118484 doi 10 1093 nar gks1007 a b Ye Fu Dan Dominissini Gideon Rechavi amp Chuan He May 2014 Gene expression regulation mediated through reversible m 6 A RNA methylation Nature reviews Genetics 15 5 293 306 PMID 24662220 doi 10 1038 nrg3724 a b v Roundtree Ian A Evans Molly E Pan Tao He Chuan 15 chervnya 2017 Dynamic RNA Modifications in Gene Expression Regulation Cell 169 7 s 1187 1200 ISSN 1097 4172 PMID 28622506 doi 10 1016 j cell 2017 05 045 Arhiv originalu za 26 sichnya 2018 Procitovano 14 zhovtnya 2017 Schwartz Schraga Bernstein Douglas A Mumbach Maxwell R et al September 2014 Transcriptome wide Mapping Reveals Widespread Dynamic Regulated Pseudouridylation of ncRNA and mRNA Cell ISSN 00928674 doi 10 1016 j cell 2014 08 028 Yildirim Ilyas Kierzek Elzbieta Kierzek Ryszard Schatz George C 11 grudnya 2014 Interplay of LNA and 2 O methyl RNA in the structure and thermodynamics of RNA hybrid systems a molecular dynamics study using the revised AMBER force field and comparison with experimental results The Journal of Physical Chemistry B 118 49 s 14177 14187 ISSN 1520 5207 PMID 25268896 doi 10 1021 jp506703g Arhiv originalu za 3 listopada 2017 Procitovano 20 zhovtnya 2017 Donny D Licatalosi amp Robert B Darnell January 2010 RNA processing and its regulation global insights into biological networks Nature reviews Genetics 11 1 75 87 PMID 20019688 doi 10 1038 nrg2673 Donny D Licatalosi amp Robert B Darnell October 2006 Splicing regulation in neurologic disease Neuron 52 1 93 101 PMID 17015229 doi 10 1016 j neuron 2006 09 017 a b v Thomas A Cooper Lili Wan amp Gideon Dreyfuss February 2009 RNA and disease Cell 136 4 777 793 PMID 19239895 doi 10 1016 j cell 2009 02 011 Dzherela RedaguvatiDavid L Bentley March 2014 Coupling mRNA processing with transcription in time and space Nature reviews Genetics 15 3 163 175 PMID 24514444 doi 10 1038 nrg3662 A V Sivolob 2008 Molekulyarna biologiya K Vidavnicho poligrafichnij centr Kiyivskij universitet Arhiv originalu za 4 bereznya 2016 Procitovano 20 chervnya 2014 A V Sivolob S R Rushkovskij S S Kir yachenko ta in 2008 Genetika K Vidavnicho poligrafichnij centr Kiyivskij universitet Arhiv originalu za 4 bereznya 2016 Procitovano 16 lipnya 2014 nbsp Cya stattya nalezhit do vibranih statej Ukrayinskoyi Vikipediyi nbsp Cya stattya nalezhit do dobrih statej ukrayinskoyi Vikipediyi Otrimano z https uk wikipedia org w index php title Procesing RNK amp oldid 40309243