www.wikidata.uk-ua.nina.az
Matricyami Kartana nazivayutsya matrici sho mayut shiroke zastosuvannya u teoriyi algebr Li zokrema u klasifikaciyi napivprostih algebr Li Zmist 1 Matricya Kartana algebri Li 2 Prikladi 3 Vlastivosti 4 Nerozkladni matrici Kartana 5 Klasifikaciya nerozkladnih matric Kartana 6 Teorema pro isnuvannya 7 Zv yazok iz diagramami Dinkina 8 Primitki 9 Div takozhMatricya Kartana algebri Li RedaguvatiNehaj L displaystyle L nbsp skinchennovimirna napivprosta algebra Li nad algebrichno zamknutim polem harakteristiki 0 H displaystyle H nbsp yiyi pidalgebra Kartana Dlya x L displaystyle x in L nbsp vikoristovuyetsya standartne poznachennya priyednanogo predstavlennya a d x L L y x y displaystyle mathrm ad x L rightarrow L quad y mapsto x y nbsp Simetrichna nevirodzhena bilinijna forma x y T r a d x a d y displaystyle langle x y rangle mathrm Tr mathrm ad x mathrm ad y nbsp nazivayetsya formoyu Killinga Yiyi obmezhennya na pidalgebru Kartana H displaystyle H nbsp ye dodatnooznachenoyu bilinijnoyu formoyu Mozhna vvesti linijnij funkcional a H displaystyle alpha in H nbsp yak a x H F y x y displaystyle alpha x H rightarrow mathbb F y mapsto langle x y rangle nbsp dlya elementa x H displaystyle x in H nbsp Zvidsi oderzhuyetsya izomorfizm vektornih prostoriv i H H x a x displaystyle iota H rightarrow H x mapsto alpha x nbsp i skalyarnij dobutok na H displaystyle H nbsp viznachenij yak a b i 1 a i 1 b displaystyle langle alpha beta rangle langle iota 1 alpha iota 1 beta rangle nbsp Isnuye odnoznachno viznachena skinchenna mnozhina F H 0 displaystyle Phi subset H setminus 0 nbsp linijnih funkcionaliv a H F displaystyle alpha H rightarrow mathbb F nbsp takih sho L H a F L a displaystyle L H oplus sum alpha in Phi L alpha nbsp de L a x L h H n N a d h a h i d H n x 0 displaystyle L alpha x in L forall h in H exists n in mathbb N mathrm ad h alpha h mathrm id H n x 0 nbsp i L a displaystyle L alpha nbsp ye pidprostorami rozmirnosti 1 Elementi mnozhini F displaystyle Phi nbsp nazivayutsya korenyami Isnuyut pidmnozhini F 0 F displaystyle Phi 0 subset Phi nbsp taki sho vsi koreni a F displaystyle alpha in Phi nbsp ye linijnimi kombinaciyami elementiv iz F 0 displaystyle Phi 0 nbsp iz cilimi koeficiyentami i do togo zh dlya kozhnogo korenya abo vsi koeficiyenti u linijnij kombinaciyi ye dodatnimi abo vsi vidyemnimi Mnozhina F 0 a 1 a l displaystyle Phi 0 alpha 1 ldots alpha l nbsp nazivayetsya mnozhinoyu prostih abo fundamentalnih koreniv i yiyi elementi utvoryuyut bazis prostoru dvoyistogo do pidalgebri Kartana H displaystyle H nbsp Matricya Kartana algebri Li za oznachennyam ye matriceyu iz koeficiyentami A i j 2 a i a j a i a i i j 1 l displaystyle A i j 2 frac langle alpha i alpha j rangle langle alpha i alpha i rangle quad i j 1 ldots l nbsp 1 Dvi matrici Kartana nazivayutsya ekvivalentnimi yaksho odna oderzhuyetsya z inshoyi perestanovkoyu fundamentalnih koreniv Klas ekvivalentnosti matrici Kartana napivprostoyi algebri Li ne zalezhit vid viboru pidalgebri Kartana chi viboru pidmnozhini F 0 F displaystyle Phi 0 subset Phi nbsp fundamentalnih koreniv Prikladi Redaguvati 2 displaystyle 2 nbsp ye yedinoyu matriceyu Kartana rozmirnosti 1 1 displaystyle 1 times 1 nbsp 2 1 1 2 displaystyle begin pmatrix 2 amp 1 1 amp 2 end pmatrix nbsp ye matriceyu Kartana dvovimirnoyi specialnoyi linijnoyi algebra Li Inshi prikladi ye u rozdili klasifikaciyi matric Kartana napivprostih Algebr Li Vlastivosti RedaguvatiNehaj A A i j i j displaystyle A A i j i j nbsp matricya Kartana napivprostoyi algebri Li Todi A i i 2 displaystyle A i i 2 nbsp dlya vsih i displaystyle i nbsp A i j 0 displaystyle A i j 0 nbsp todi i tilki todi koli A j i 0 displaystyle A j i 0 nbsp A i j 0 1 2 3 displaystyle A i j in 0 1 2 3 nbsp dlya vsih i j displaystyle i not j nbsp Yaksho A i j 2 3 displaystyle A i j in 2 3 nbsp to A j i 1 displaystyle A j i 1 nbsp A displaystyle A nbsp ye nevirodzhenoyu i obernena matricya maye nevid yemni racionalni koeficiyenti 2 Isnuyut diagonalna matricya D displaystyle D nbsp i simetrichna matricya B displaystyle B nbsp dlya yakih A D B displaystyle A DB nbsp Nerozkladni matrici Kartana RedaguvatiYaksho matricya Kartana algebri Li L displaystyle L nbsp ye ekvivalentnoyu matrici vidu A 1 0 0 A 2 displaystyle begin pmatrix A 1 amp 0 0 amp A 2 end pmatrix nbsp dlya deyakih matric A 1 displaystyle A 1 nbsp i A 2 displaystyle A 2 nbsp menshoyi rozmirnosti to matricya Kartana nazivayet rozkladnoyu Matrici A 1 displaystyle A 1 nbsp i A 2 displaystyle A 2 nbsp ye matricyami Kartana i algebra Li L displaystyle L nbsp ye pryamoyu sumoyu idealiv L L 1 L 2 displaystyle L L 1 oplus L 2 nbsp de A i displaystyle A i nbsp ye matriceyu Kartana L i displaystyle L i nbsp Nerozkladni matrici Kartana vidpovidayut prostim algebram Li Bilsh tochno skinchennovimirni prosti algebri Li mayut ekvivalentni nerozkladni matrici Kartana i ekvivalentni nerozkladni matrici Kartana vidpovidayut izomorfnim prostim algebram Li Klasifikaciya nerozkladnih matric Kartana RedaguvatiDlya nerozkladnih matric Kartana nad algebrichno zamknutim polem harakteristiki 0 vidoma vicherpna klasifikaciya iz yakoyi oderzhuyetsya takozh klasifikaciya skinchennovimirnihr prostih algebr Li nad takimi zh polyami 3 Klasifikaciya rozbivaye vsi taki matrici na 4 poslidovnosti A n B n C n D n i pyat okremih matric A n 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 2 n 1 displaystyle A n begin pmatrix 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 end pmatrix quad quad n geq 1 nbsp B n 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 2 2 n 2 displaystyle B n begin pmatrix 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 2 amp 2 end pmatrix quad quad n geq 2 nbsp C n 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 2 1 2 n 3 displaystyle C n begin pmatrix 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp cdot amp amp amp amp amp amp amp cdot amp cdot amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp 2 amp amp amp amp amp amp amp 1 amp 2 end pmatrix quad quad n geq 3 nbsp D n 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 2 1 2 n 4 displaystyle D n begin pmatrix 2 amp 1 amp amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp amp 1 amp cdot amp cdot amp amp amp amp amp amp amp amp cdot amp cdot amp cdot amp amp amp amp amp amp amp amp cdot amp cdot amp 1 amp amp amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp amp amp 1 amp 2 amp 1 amp 1 amp amp amp amp amp amp amp 1 amp 2 amp amp amp amp amp amp amp amp 1 amp amp 2 end pmatrix quad quad n geq 4 nbsp E 6 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 displaystyle E 6 begin pmatrix 2 amp 1 amp amp amp amp 1 amp 2 amp 1 amp amp amp amp 1 amp 2 amp 1 amp 1 amp amp amp 1 amp 2 amp amp amp amp 1 amp amp 2 amp 1 amp amp amp amp 1 amp 2 end pmatrix nbsp E 7 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 displaystyle E 7 begin pmatrix 2 amp 1 amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp 1 amp 2 amp 1 amp 1 amp amp amp amp 1 amp 2 amp amp amp amp amp 1 amp amp 2 amp 1 amp amp amp amp amp 1 amp 2 end pmatrix nbsp E 8 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 2 1 1 2 displaystyle E 8 begin pmatrix 2 amp 1 amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp 1 amp 2 amp 1 amp amp amp amp amp amp 1 amp 2 amp 1 amp 1 amp amp amp amp amp 1 amp 2 amp amp amp amp amp amp 1 amp amp 2 amp 1 amp amp amp amp amp amp 1 amp 2 end pmatrix nbsp F 4 2 1 1 2 1 2 2 1 1 2 displaystyle F 4 begin pmatrix 2 amp 1 amp amp 1 amp 2 amp 1 amp amp 2 amp 2 amp 1 amp amp 1 amp 2 end pmatrix nbsp G 2 2 1 3 2 displaystyle G 2 begin pmatrix 2 amp 1 3 amp 2 end pmatrix nbsp Viznachniki vidpovidnih matric Kartana navedeni u tablici A n displaystyle A n nbsp B n displaystyle B n nbsp n 2 displaystyle n geq 2 nbsp C n displaystyle C n nbsp n 2 displaystyle n geq 2 nbsp D n displaystyle D n nbsp n 4 displaystyle n geq 4 nbsp E n displaystyle E n nbsp n 5 displaystyle n geq 5 nbsp F 4 displaystyle F 4 nbsp G 2 displaystyle G 2 nbsp n 1 2 2 4 9 n 1 1Teorema pro isnuvannya RedaguvatiDlya kozhnoyi matrici Kartana A A i j i j displaystyle A A i j i j nbsp iz navedenogo vishe spisku isnuye yedina z tochnistyu do izomorfizmu skinchennovimirna prosta algebra Li Ce tverdzhennya chasto nazivayetsya teoremoyu pro isnuvannya Yiyi mozhna otrimati iz vilnoyi algebri Li iz generatorami e 1 e n h 1 h n f 1 f n displaystyle e 1 ldots e n h 1 ldots h n f 1 ldots f n nbsp iz dodavannyam spivvidnoshen h i h j displaystyle h i h j nbsp h i e j A i j e j displaystyle h i e j A i j e j nbsp h i f j A i j f j displaystyle h i f j A i j f j nbsp e i f i h i displaystyle e i f i h i nbsp e i f j displaystyle e i f j nbsp dlya i j displaystyle i not j nbsp e i e i e i e j displaystyle e i e i ldots e i e j nbsp dlya i j displaystyle i not j nbsp i dlya 1 A i j displaystyle 1 A i j nbsp vhodzhen elementa e i displaystyle e i nbsp u formuli f i f i f i f j displaystyle f i f i ldots f i f j nbsp dlya i j displaystyle i not j nbsp i dlya 1 A i j displaystyle 1 A i j nbsp vhodzhen elementa f i displaystyle f i nbsp u formuli Dani spivvidnoshennya nazivayutsya spivvidnoshennyami Serra Dlya kozhnogo klasu ekvivalentnosti nerozkladnih matric Kartana pobudovana za takimi spivvidnoshennyami algebra Li bude skinchennovimirnoyu prostoyu i vihidna matricya bude yiyi matriceyu Kartana 4 Dlya zagalnoyi matrici Kartana vnaslidok takoyi pobudovi oderzhuyetsya napivprosta algebra Li Bilsh zagalno yaksho matricya yaku tezh chasto nazivayut matriceyu Kartana zadovolnyaye lishe pershi dvi vlastivosti zi spisku a zamist dvoh nastupnih vimagayetsya lishe te sho vsi nediagonalni elementi ye nedodatnimi cilimi chislami to dlya neyi tezh mozhna pobuduvati algebru Li za toyu zh shemoyu iz porodzhuyuchimi elementami i spivvidnoshennyami Oderzhana vnaslidok takoyi pobudovi algebra Li bude skinchennovimirnoyu todi i lishe todi koli vihidna matricya ye matriceyu Kartana napivprostoyi algebri Li Zv yazok iz diagramami Dinkina Redaguvati nbsp zv yazani diagrami DinkinaMatrici Kartana mozhna klasifikuvati za dopomogoyu diagram Dinkina Dlya bud yakoyi matrici Kartana A A i j i j displaystyle A A i j i j nbsp rozmirnosti n displaystyle n nbsp buduyetsya graf iz n displaystyle n nbsp vershinami x 1 x n displaystyle x 1 ldots x n nbsp Dvi vershini x i displaystyle x i nbsp i x j displaystyle x j nbsp spoluchayutsya A i j A j i displaystyle A i j A j i nbsp rebrami Yaksho x i displaystyle x i nbsp i x j displaystyle x j nbsp pov yazuyutsya bilsh nizh odnim rebrom to dodatkovo malyuyetsya strilka gt u napryamku vershini x j displaystyle x j nbsp dlya yakoyi A j i gt A i j displaystyle A j i gt A i j nbsp 5 Z diagrami Dinkina mozhna odnoznachno vidnoviti matricyu Kartana Na malyunku zobrazheni vsi zv yazani diagrami Dinkina dlya nerozkladnih matric Kartana A n B n C n D n E 6 E 7 E 8 F 4 G 2 displaystyle A n B n C n D n E 6 E 7 E 8 F 4 G 2 nbsp Primitki Redaguvati Roger Carter Lie Algebras of Finite and Affine Type Cambridge studies in advanced mathematics 96 2005 ISBN 978 0 521 85138 1 Rozdil 6 1 The Cartan matrix Roger Carter Lie Algebras of Finite and Affine Type Cambridge studies in advanced mathematics 96 2005 ISBN 978 0 521 85138 1 Teorema 10 18 Roger Carter Lie Algebras of Finite and Affine Type Cambridge studies in advanced mathematics 96 2005 ISBN 978 0 521 85138 1 Rozdil 6 4 Classification of Cartan matrices Roger Carter Lie Algebras of Finite and Affine Type Cambridge studies in advanced mathematics 96 2005 ISBN 978 0 521 85138 1 Rozdil 7 5 The existence theorem Roger Carter Lie Algebras of Finite and Affine Type Cambridge studies in advanced mathematics 96 2005 ISBN 978 0 521 85138 1 Rozdil 6 4 Classification Cartan matricesDiv takozh RedaguvatiNapivprosta algebra Li Sistema koreniv Otrimano z https uk wikipedia org w index php title Matricya Kartana amp oldid 38193291