www.wikidata.uk-ua.nina.az
V abstraktnij algebri primarnim rozkladom ideala I displaystyle I kilcya R displaystyle R abo bilsh zagalno pidmodulya N displaystyle N modulya M displaystyle M nazivayetsya podannya cogo ideala chi modulya u viglyadi peretinu primarnih idealiv primarnih pidmoduliv Primarnij rozklad uzagalnyuye rozklad cilogo chisla v dobutok stepeniv riznih prostih chisel Osoblivo vazhlivim ye vipadok komutativnih neterovih kilec Dlya nih isnuvannya primarnogo rozkladu bulo dovedeno Emmi Neter yaka uzagalnila otrimanij u 1905 roci Laskerom rezultat pro isnuvannya takogo rozkladu dlya kilec mnogochleniv i zbizhnih stepenevih ryadiv Tomu cej rezultat tradicijno nazivayetsya teoremoyu Laskera Neter Zmist 1 Oznachennya 2 Teorema Laskera Neter 2 1 Dovedennya 3 Teoremi yedinosti 4 Prikladi 5 Geometrichna interpretaciya 6 Div takozh 7 LiteraturaOznachennya red Nehaj R displaystyle R nbsp komutativne kilce M displaystyle M nbsp i N displaystyle N nbsp moduli nad nim Dilnik nulya modulya M displaystyle M nbsp element r displaystyle r nbsp kilcya R displaystyle R nbsp takij sho r m 0 displaystyle rm 0 nbsp dlya deyakogo nenulovogo m displaystyle m nbsp z M displaystyle M nbsp Element kilcya nazivayetsya nilpotentnim v M displaystyle M nbsp yaksho r n M displaystyle r n M nbsp 0 dlya deyakogo naturalnogo chisla n displaystyle n nbsp Modul nazivayetsya koprimarnim yaksho kozhen jogo dilnik nulya ye nilpotentnim Inshimi slovami yaksho vidobrazhennya l r M M x r x displaystyle lambda r M to M x to rx nbsp dlya kozhnogo r R displaystyle r in R nbsp ye abo in yektivnim abo nilpotentnim U vipadku skinchennoporodzhenih moduliv nad neterovim kilcem ekvivalentnoyu ye umova sho dlya modulya isnuye yedinij asocijovanij prostij ideal Pidmodul M displaystyle M nbsp modulya N displaystyle N nbsp nazivayetsya primarnim yaksho N M displaystyle N M nbsp ye koprimarnim Mnozhina dilnikiv nulya u comu vipadku ye rivnoyu radikalu p Ann N M displaystyle mathfrak p in sqrt operatorname Ann N M nbsp Cej ideal ye prostim oskilki ochevidno dobutok dvoh elementiv sho ne ye dilnikami nulya tezh ne ye dilnikom nulya Pidmodul todi nazivayetsya p displaystyle mathfrak p nbsp primarnim Z oznachen ochevidno sho r x M r R x N displaystyle rx in M quad r in R x in N nbsp yaksho i tilki yaksho abo x M displaystyle x in M nbsp abo r p displaystyle r in mathfrak p nbsp Ideal I displaystyle I nbsp ye primarnim yaksho vin ye primarnim pidmodulem R displaystyle R nbsp yak R displaystyle R nbsp modulya tobto koli v faktor kilci R I displaystyle R I nbsp kozhen dilnik nulya ye nilpotentnim Ce oznachennya ye ekvivalentnim standartnomu oznachennyu yaksho ab nalezhit I to abo a nalezhit I abo bn nalezhit I dlya deyakogo naturalnogo chisla n Inshoyu ekvivalentnoyu umovoyu ye te sho kozhen dilnik nulya u kilci R I ye nilpotentnim Pidmodul M displaystyle M nbsp modulya N displaystyle N nbsp nazivayetsya nezvidnim yaksho vin ne ye peretinom dvoh pidmoduliv strogo bilshih za nogo Prostij ideal asocijovanij z modulem M displaystyle M nbsp prostij ideal yakij ye anulyatorom deyakogo elementa modulya Teorema Laskera Neter red Teorema Laskera Neter dlya moduliv stverdzhuye sho kozhen pidmodul skinchennoporodzhenogo modulya nad neterovim kilcem ye skinchennim peretinom primarnih pidmoduliv U vipadku kilec cya teorema stverdzhuye sho kozhen ideal neterovogo kilcya ye skinchennim peretinom primarnih idealiv Ekvivalentne formulyuvannya kozhen skinchennoporodzhenij modul nad neterovim kilcem ye pidmodulem skinchennogo dobutku koprimarnih moduliv Dovedennya red Nehaj M displaystyle M nbsp skinchennoporodzhenij modul nad neterovim kilcem R displaystyle R nbsp i N displaystyle N nbsp pidmodul v M displaystyle M nbsp Dlya dovedennya isnuvannya rozkladu dlya N displaystyle N nbsp zaminivshi M displaystyle M nbsp na M N displaystyle M N nbsp dostatno rozglyanuti vipadok N 0 displaystyle N 0 nbsp Dlya dovilnih pidmoduliv Q i displaystyle Q i nbsp modulya M displaystyle M nbsp mayemo ekvivalentnist 0 Q i Ass Q i Ass Q i displaystyle 0 cap Q i Leftrightarrow emptyset operatorname Ass cap Q i cap operatorname Ass Q i nbsp Zvidsi dlya pidmodulya 0 isnuye primarnij rozklad yaksho dlya kozhnogo prostogo ideala p displaystyle mathfrak p nbsp asocijovanogo z modulem M displaystyle M nbsp cih idealiv ye skinchenna kilkist detali u statti Asocijovanij prostij ideal isnuye primarnij pidmodul Q displaystyle Q nbsp takij sho p Ass Q displaystyle mathfrak p not in operatorname Ass Q nbsp Rozglyanemo mnozhinu N M p Ass N displaystyle N subseteq M mathfrak p not in operatorname Ass N nbsp vona ye nepustoyu oskilki nulovij modul ye yiyi elementom Oskilki M displaystyle M nbsp ye neterovim modulem to mnozhina maye maksimalnij element Q displaystyle Q nbsp Yaksho Q displaystyle Q nbsp ne ye p displaystyle mathfrak p nbsp primarnim napriklad p p displaystyle mathfrak p neq mathfrak p nbsp ye asocijovanim prostim idealom faktor modulya M Q displaystyle M Q nbsp todi R p Q Q displaystyle R mathfrak p simeq Q Q nbsp dlya deyakogo pidmodulya Q Ale p Ass Q displaystyle mathfrak p not in operatorname Ass Q nbsp i takozh p Ass R p Ass Q Q displaystyle mathfrak p not in operatorname Ass R mathfrak p simeq operatorname Ass Q Q nbsp i z vlastivostej asocijovanih prostih idealiv p Ass Q displaystyle mathfrak p not in operatorname Ass Q nbsp sho superechit maksimalnosti Q displaystyle Q nbsp Yak naslidok Q displaystyle Q nbsp ye primarnim Teoremi yedinosti red Nehaj R komutativne kilce Neter Primarnij rozklad a 1 i k q i displaystyle mathfrak a bigcap limits 1 leq i leq k mathfrak q i nbsp dd nazivayetsya nezvidnim yaksho dlya bud yakogo 1 i k displaystyle left 1 leq i leq k right nbsp q i j i q j displaystyle mathfrak q i nsupseteq bigcap nolimits j neq i mathfrak q j nbsp i radikali p i q i displaystyle mathfrak p i sqrt mathfrak q i nbsp komponent rozkladu ye poparno riznimi Iz dovilnogo primarnogo rozkladu mozhna otrimati nezvidnij spershu viluchivshi vsi neminimalni komponenti a potim zaminivshi komponenti z odnakovim radikalom yih peretinom oskilki peretin primarnih idealiv z odnakovim radikalom ye primarnim idealom z tim zhe radikalom Persha teorema yedinosti primarnogo rozkladu Sukupnist prostih idealiv p 1 p n displaystyle mathfrak p 1 mathfrak p n nbsp pri nezvidnomu rozkladi viznachena odnoznachno idealom a displaystyle mathfrak a nbsp i ne zalezhit vid primarnogo rozkladu Cya mnozhina rivna mnozhini A s s R R a displaystyle mathrm Ass R R mathfrak a nbsp asocijovanih prostih idealiv faktor kilcya R a displaystyle R mathfrak a nbsp Minimalni za vklyuchennyam elementi ciyeyi sukupnosti nazivayutsya izolovanimi prostimi idealami ideala a displaystyle mathfrak a nbsp inshi vkladenimi prostimi idealami Mnozhina izolovanih prostih idealiv ye rivnoyu mnozhini minimalnih prostih idealiv dlya ideala a displaystyle mathfrak a nbsp Druga teorema yedinosti primarnogo rozkladu Primarni ideali radikalami yakih ye izolovani prosti ideali odnoznachno viznachayutsya idealom i ne zalezhat vid primarnogo rozkladu Prikladi red Dlya kozhnogo dodatnogo cilogo chisla n dlya kilcya k x y displaystyle k x y nbsp dlya ideala I x 2 x y displaystyle I langle x 2 xy rangle nbsp isnuye primarnij rozklad I x 2 x y x x 2 x y y n displaystyle I langle x 2 xy rangle langle x rangle cap langle x 2 xy y n rangle nbsp Asocijovanimi prostimi idealami dlya cogo ideala ye x x y displaystyle langle x rangle subset langle x y rangle nbsp Tobto x displaystyle langle x rangle nbsp ye izolovanim idealom i x displaystyle langle x rangle nbsp ye vidpovidnim komponentom sho zustrichayetsya u kozhnomu primarnomu rozkladi Geometrichna interpretaciya red V algebrichnij geometriyi afinna algebrichna mnozhina V I ye za oznachennyam rivnoyu mnozhini nuliv ideala I v kilci mnogochleniv R k x 1 x n displaystyle R k x 1 ldots x n nbsp Nezvidnij primarnij rozklad I q 1 q r displaystyle I mathfrak q 1 cap cdots cap mathfrak q r nbsp ideala I zadaye rozklad mnozhini V I v ob yednannya algebrichnih mnogovidiv V q i displaystyle V mathfrak q i nbsp yaki ye nezvidnimi tobto ne ye ob yednannyami dvoh menshih algebrichnih mnozhin Yaksho p i displaystyle mathfrak p i nbsp ye radikalom ideala q i displaystyle mathfrak q i nbsp to V p i V q i displaystyle V mathfrak p i V mathfrak q i nbsp i teorema Laskera Neter demonstruye sho V I maye yedinij nenadlishkovij rozklad u ob yednannya nezvidnih algebrichnih mnogovidiv V I V p i displaystyle V I bigcup V mathfrak p i nbsp de ob yednannya beretsya lishe za minimalnimi asocijovanimi prostimi idealami Ci prosti ideali ye elementami primarnogo rozkladu ideala I Dlya vipadku rozkladu algebrichnih mnogovidiv znachennya mayut lishe minimalni prosti ideali ale v teoriyi peretiniv i teoriyi shem ves primarnij rozklad maye geometrichnij zmist Div takozh red Asocijovanij prostij ideal Minimalnij prostij ideal Primarnij idealLiteratura red Atiyah Macdonald Introduction to Commutative Algebra Addison Wesley 1969 ISBN 0 2010 0361 9 Eisenbud David 1995 Commutative algebra Graduate Texts in Mathematics 150 Berlin New York Springer Verlag ISBN 978 0 387 94268 1 MR 1322960 Lasker E 1905 Zur Theorie der Moduln und Ideale Math Ann 60 19 116 doi 10 1007 BF01447495 Noether Emmy 1921 Idealtheorie in Ringbereichen Mathematische Annalen 83 1 24 doi 10 1007 BF01464225 nedostupne posilannya Jean Pierre Serre Local algebra Springer Verlag 2000 ISBN 3 540 66641 9 Otrimano z https uk wikipedia org w index php title Primarnij rozklad amp oldid 34962547