www.wikidata.uk-ua.nina.az
Teore ma Bolcano Veyershtra ssa tverdzhennya v matematichnomu analizi zgidno z yakim iz bud yakoyi obmezhenoyi poslidovnosti mozhna vidiliti zbizhnu pidposlidovnist Zmist 1 Istoriya 2 Uzagalnennya v topologiyi 3 Klasichna teorema 4 Naslidok 5 Div takozh 6 Literatura 7 DzherelaIstoriya RedaguvatiCya teorema dovedena v 1817 roci 1 2 cheskim matematikom Bernardom Bolcano 1781 1848 na pivstolittya piznishe bula nezalezhno otrimana Karlom Veyershtrassom 1815 1897 Uzagalnennya v topologiyi RedaguvatiPro uzagalnennya ciyeyi teoremi v topologiyi Nehaj X T displaystyle X mathrm T nbsp topologichnij prostir A displaystyle A nbsp pidmnozhina X displaystyle X nbsp Todi Yaksho A displaystyle A nbsp kompakt to dlya bud yakoyi poslidovnosti x n displaystyle x n nbsp z A displaystyle A nbsp bud yaka granichna tochka ciyeyi poslidovnosti takozh nalezhit A displaystyle A nbsp I navpaki yaksho dlya kozhnoyi poslidovnosti z pidmnozhini granichna tochka nalezhit mnozhini i okrim cogo X T displaystyle X mathrm T nbsp zadovilnyaye drugu aksiomu zlichennosti to A displaystyle A nbsp ye kompaktnoyu pidmnozhinoyu Zokrema yaksho X T displaystyle X mathrm T nbsp zadovilnyaye drugu aksiomu zlichennosti to A displaystyle A nbsp bude kompaktnoyu todi i lishe todi koli dlya kozhnoyi poslidovnosti z A displaystyle A nbsp granichna tochka nalezhit yij 3 4 Klasichna teorema RedaguvatiNehaj x n displaystyle x n nbsp bud yaka obmezhena poslidovnist dijsnih chisel tobto a R b R n N a x n b displaystyle bigl exists a in mathbb R bigr bigl exists b in mathbb R bigr bigl forall n in mathbb N bigr a leqslant x n leqslant b nbsp Z neyi zavzhdi mozhna vidiliti zbizhnu pidposlidovnist DovedennyaRozdilimo vidrizok a b displaystyle a b nbsp tochkoyu a b 2 displaystyle frac a b 2 nbsp navpil Todi hocha b odin iz vidrizkiv a a b 2 displaystyle left a frac a b 2 right nbsp chi a b 2 b displaystyle left frac a b 2 b right nbsp mistit neskinchennu kilkist chleniv poslidovnosti span class mwe math element span class mwe math mathml inline mwe math mathml a11y style display none span span Poznachimo takij vidrizok span class mwe math element span class mwe math mathml inline mwe math mathml a11y style display none span span Analogichno utvorimo vidrizki a 1 a 1 b 1 2 displaystyle left a 1 frac a 1 b 1 2 right nbsp ta a 1 b 1 2 b 1 displaystyle left frac a 1 b 1 2 b 1 right nbsp hocha b odin z yakih tezh mistit neskinchennu kilkist chleniv poslidovnosti span class mwe math element span class mwe math mathml inline mwe math mathml a11y style display none span span Poznachimo jogo span class mwe math element span class mwe math mathml inline mwe math mathml a11y style display none span span Prodovzhuyuchi opisanij proces otrimuyemo poslidovnist vkladenih vidrizkiv a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 a k b k displaystyle a 1 b 1 supset a 2 b 2 supset a 3 b 3 supset a 4 b 4 supset ldots a k b k supset ldots nbsp dovzhina yakih d k d e f b k a k b a 2 k displaystyle d k overset underset mathrm def b k a k frac b a 2 k nbsp Oskilki lim k d k lim k b a 2 k 0 displaystyle lim k to infty d k lim k to infty tfrac b a 2 k 0 nbsp to zgidno z teoremoyu pro princip vkladenih vidrizkiv lim k a k lim k b k d e f c displaystyle lim k to infty a k lim k to infty b k overset underset mathrm def c nbsp Viberemo poslidovnist x n k displaystyle x n k nbsp tak Nehaj x n 1 displaystyle x n 1 nbsp bud yakij iz chleniv poslidovnosti x n displaystyle x n nbsp sho nalezhit vidrizku a 1 b 1 displaystyle a 1 b 1 nbsp x n 2 displaystyle x n 2 nbsp bud yakij iz chleniv poslidovnosti x n displaystyle x n nbsp sho nalezhit vidrizku a 2 b 2 displaystyle a 2 b 2 nbsp i takij sho n 2 gt n 1 displaystyle n 2 gt n 1 nbsp Takij chlen zavzhdi isnuye oskilki vidrizok a 2 b 2 displaystyle a 2 b 2 nbsp mistit neskinchenno bagato chleniv poslidovnosti x n displaystyle x n nbsp I vzagali x n k displaystyle x n k nbsp bud yakij iz chleniv poslidovnosti x n displaystyle x n nbsp sho nalezhit vidrizku a k b k displaystyle a k b k nbsp i takij sho n k gt n k 1 displaystyle n k gt n k 1 nbsp Prodovzhuyuchi opisanij proces otrimuyemo poslidovnist x n k displaystyle x n k nbsp prichomu n 1 lt n 2 lt lt n k lt displaystyle n 1 lt n 2 lt ldots lt n k lt ldots nbsp i vikonuyut nerivnosti a k x n k b k displaystyle a k leqslant x n k leqslant b k nbsp Vrahovuyuchi zgidno z teoremoyu pro tri poslidovnosti mayemo lim k x n k c displaystyle lim k to infty x n k c nbsp Naslidok RedaguvatiZ bud yakoyi poslidovnosti dijsnih chisel mozhna vidiliti pidposlidovnist zbizhnu v R displaystyle mathbb R cup infty nbsp DovedennyaNehaj x n displaystyle x n nbsp dovilna poslidovnist Yaksho x n displaystyle x n nbsp obmezhena to za teoremoyu Bolcano Veyershtrassa z neyi mozhna vidiliti zbizhnu pidposlidovnist Yaksho x n displaystyle x n nbsp neobmezhena zverhu to k N n k N x n k gt k displaystyle bigl forall k in mathbb N bigr bigl exists n k in mathbb N bigr x n k gt k nbsp Dovedemo sho lim k x n k displaystyle lim k to infty x n k infty nbsp Spravdi oskilki M R K N K gt M displaystyle bigl forall M in mathbb R bigr bigl exists K in mathbb N bigr K gt M nbsp to M R K N k gt K x n k gt M displaystyle bigl forall M in mathbb R bigr bigl exists K in mathbb N bigr bigl forall k gt K bigr x n k gt M nbsp sho j oznachaye vikonannya spivvidnoshennya Div takozh RedaguvatiChastkova granicya poslidovnosti Verhnya granicya poslidovnosti Nizhnya granicya poslidovnosti Fundamentalna poslidovnist Kriterij Koshi Tri poslidovnosti Poslidovnist vkladenih vidrizkivLiteratura RedaguvatiVisha matematika 2 Navchalnij posibnik dlya studentiv tehnichnih napryamkiv pidgotovki Ukladach V V Bakun K NTUU KPI 2013 270 s L D Kudryavcev Teorema Bolcano Vejershtrassa Matematicheskaya enciklopediya Tom 1 onlajn angl Bolzano Weierstrass theorem Encyclopedia of MathematicsDzherela Redaguvati The Bolzano Weierstrass theorem was actually first proved by Bolzano in 1817 as a lemma in the proof of the intermediate value theorem Rein analytischer Beweis des Lehrsatzes das zwischen je zwey Werthen die ein entgegengesetzes Resultat gewahren wenigstens eine reelle Wurzel der Gleichung liege Purely analytic proof of the theorem that between any two values which give results of opposite sign there lies at least one real root of the equation Bernard Bolzano gedruckt bei Gottlieb Haase 1817 60 S Bolzano V Abhandl Bohmischen Ges Wiss 1817 L D Kudryavcev Matematicheskaya enciklopediya Tom 1 A G Red kollegiya I M Vinogradov glav red i dr M Sovetskaya enciklopediya 1977 1152 stb s ill Zabolockij M V Storozh O G Tarasyuk S I 2008 Matematichnij analiz ukr Kiyiv Znannya ISBN 978 966 346 323 0 Zabolockij M V Fedinyak S I Filevich P V 2005 Praktikum z matematichnogo analizu ukr Lviv Vidavnichij centr LNU imeni Ivana Franka s 80 Otrimano z https uk wikipedia org w index php title Teorema Bolcano Veyershtrassa amp oldid 40349603