www.wikidata.uk-ua.nina.az
V geometriyi Evklida peretinom dvoh pryamih mozhe buti porozhnya mnozhina tochka abo pryama Rozriznennya cih vipadkiv i poshuk tochki peretinu vikoristovuyetsya napriklad v komp yuternij grafici pri planuvanni ruhu i dlya viyavlennya zitknen Peretin pryamih U trivimirnoyi geometriyi Evklida yaksho dlya dvoh pryamih nemaye takoyi ploshini yakij bi voni nalezhali to voni nazivayutsya mimobizhnimi pryamimi i ne mayut tochok peretinu Yaksho pryami znahodyatsya v odnij ploshini to ye tri mozhlivosti Yaksho voni zbigayutsya voni mayut neskinchenno bagato spilnih tochok a same vsi tochki na cih pryamih Yaksho pryami rizni ale mayut odin i toj zhe nahil voni paralelni i ne mayut spilnih tochok V inshomu vipadku voni mayut odnu tochku peretinu U neevklidovoyi geometriyi dvi pryami mozhut peretinatisya v dekilkoh tochkah i kilkist pryamih yaki ne peretinayutsya z danoyu pryamoyu paralelnih mozhe buti bilshim za odinicyu Zmist 1 Peretin dvoh pryamih 1 1 Yaksho zadani po dvi tochki na kozhnij pryamij 1 2 Yaksho zadano rivnyannya pryamih 1 3 Vikoristannya odnoridnih koordinat 2 Peretin n pryamih 2 1 Isnuvannya ta viraz dlya peretinu 2 1 1 U dvomirnomu prostori 2 1 2 U trivimirnomu prostori 2 2 Najblizhcha tochka perehresnih pryamih 2 2 1 U dvoh vimirah 2 2 2 U trivimirnomu prostori 2 2 3 Uzagalnennya 3 Div takozh 4 Primitki 5 PosilannyaPeretin dvoh pryamih RedaguvatiNeobhidnoyu umovoyu peretinu dvoh pryamih ye prinalezhnist yih odnij ploshini tobto ci pryami ne povinni buti mimobizhnimi pryamimi Vikonannya ciyeyi umovi ekvivalentno virodzhenosti chotirigrannika u yakogo dvi vershini lezhat na odnij pryamij a dvi inshi na inshij tobto ob yem cogo tetraedra dorivnyuye nulyu Algebrayichnu formu ciyeyi umovi mozhna znajti v statti Mimobizhni pryami Perevirka na mimobizhnist Yaksho zadani po dvi tochki na kozhnij pryamij Redaguvati Rozglyanemo peretin dvoh pryamih L 1 displaystyle L 1 nbsp ta L 2 displaystyle L 2 nbsp na ploshini de pryama L 1 displaystyle L 1 nbsp viznachena dvoma riznimi tochkami x 1 y 1 displaystyle x 1 y 1 nbsp ta x 2 y 2 displaystyle x 2 y 2 nbsp a pryama L 2 displaystyle L 2 nbsp riznimi tochkami x 3 y 3 displaystyle x 3 y 3 nbsp ta x 4 y 4 displaystyle x 4 y 4 nbsp 1 Tochku peretinu P P x P y displaystyle P P x P y nbsp pryamih L 1 displaystyle L 1 nbsp ta L 2 displaystyle L 2 nbsp mozhna znajti za dopomogoyu viznachnikivP x x 1 y 1 x 2 y 2 x 1 1 x 2 1 x 3 y 3 x 4 y 4 x 3 1 x 4 1 x 1 1 x 2 1 y 1 1 y 2 1 x 3 1 x 4 1 y 3 1 y 4 1 P y x 1 y 1 x 2 y 2 y 1 1 y 2 1 x 3 y 3 x 4 y 4 y 3 1 y 4 1 x 1 1 x 2 1 y 1 1 y 2 1 x 3 1 x 4 1 y 3 1 y 4 1 displaystyle P x frac begin vmatrix begin vmatrix x 1 amp y 1 x 2 amp y 2 end vmatrix amp begin vmatrix x 1 amp 1 x 2 amp 1 end vmatrix begin vmatrix x 3 amp y 3 x 4 amp y 4 end vmatrix amp begin vmatrix x 3 amp 1 x 4 amp 1 end vmatrix end vmatrix begin vmatrix begin vmatrix x 1 amp 1 x 2 amp 1 end vmatrix amp begin vmatrix y 1 amp 1 y 2 amp 1 end vmatrix begin vmatrix x 3 amp 1 x 4 amp 1 end vmatrix amp begin vmatrix y 3 amp 1 y 4 amp 1 end vmatrix end vmatrix qquad P y frac begin vmatrix begin vmatrix x 1 amp y 1 x 2 amp y 2 end vmatrix amp begin vmatrix y 1 amp 1 y 2 amp 1 end vmatrix begin vmatrix x 3 amp y 3 x 4 amp y 4 end vmatrix amp begin vmatrix y 3 amp 1 y 4 amp 1 end vmatrix end vmatrix begin vmatrix begin vmatrix x 1 amp 1 x 2 amp 1 end vmatrix amp begin vmatrix y 1 amp 1 y 2 amp 1 end vmatrix begin vmatrix x 3 amp 1 x 4 amp 1 end vmatrix amp begin vmatrix y 3 amp 1 y 4 amp 1 end vmatrix end vmatrix nbsp Viznachniki mozhna perepisati u viglyadi P x P y x 1 y 2 y 1 x 2 x 3 x 4 x 1 x 2 x 3 y 4 y 3 x 4 x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 x 1 y 2 y 1 x 2 y 3 y 4 y 1 y 2 x 3 y 4 y 3 x 4 x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 displaystyle begin aligned P x P y bigg amp frac x 1 y 2 y 1 x 2 x 3 x 4 x 1 x 2 x 3 y 4 y 3 x 4 x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 amp frac x 1 y 2 y 1 x 2 y 3 y 4 y 1 y 2 x 3 y 4 y 3 x 4 x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 bigg end aligned nbsp Zauvazhimo sho znahoditsya tochka peretinu pryamih a ne vidrizkiv mizh tochkami i tomu vona mozhe lezhati poza vidrizkami Yaksho shukati rishennya v terminah krivih Bezye pershogo poryadku to mozhna pereviriti parametri cih krivih 0 0 t 1 0 ta 0 0 u 1 0 t ta u parametri 2 Yaksho dvi pryami ye paralelnimi abo zbigayutsya todi znamennik dorivnyuye nulyu x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 0 displaystyle x 1 x 2 y 3 y 4 y 1 y 2 x 3 x 4 0 nbsp U vipadku koli pryami majzhe paralelni pri obchislenni na komp yuteri mozhut viniknuti chislovi skladnoshi oskilki znamennik bude zanadto blizkim do nulya j rozpiznavannya takogo vipadku mozhe potrebuvati vidpovidnogo testu na neviznachenist dlya programi Bilsh stijke i zagalne rishennya mozhe buti otrimano pri obertanni vidrizkiv takim chinom sho odin z nih stane gorizontalnim a todi parametrichne rishennya drugoyi pryamoyi legko otrimati Pri roz vyazanni neobhidno uvazhno rozglyanuti okremi vipadki roztashuvannya pryamih ta vidrizkiv taki yak paralelnist chi zbig pryamih mozhlive nakladennya vidrizkiv Yaksho zadano rivnyannya pryamih Redaguvati Koordinati x displaystyle x nbsp i y displaystyle y nbsp tochki peretinu dvoh nevertikalnih pryamih mozhna legko znajti za dopomogoyu nastupnih pidstavlen i peretvoren y a x c displaystyle y ax c nbsp ta y b x d displaystyle y bx d nbsp de a displaystyle a nbsp i b displaystyle b nbsp kutovi koeficiyenti pryamih a c displaystyle c nbsp ta d displaystyle d nbsp koordinati peretinu pryamih z vissyu Oy U tochci peretinu pryamih yaksho voni peretinayutsya obidvi koordinati y displaystyle y nbsp budut zbigatisya zvidki otrimuyemo rivnist a x c b x d displaystyle ax c bx d nbsp Mi mozhemo peretvoriti ce rivnyannya z metoyu vidilennya x displaystyle x nbsp a x b x d c displaystyle ax bx d c nbsp todi x d c a b displaystyle x frac d c a b nbsp Dlya znahodzhennya y displaystyle y nbsp pidstavlyayemo x displaystyle x nbsp u bud yake z dvoh rivnyan Nehaj u pershe y a d c a b c displaystyle y a frac d c a b c nbsp Zvidsi otrimuyemo tochku peretinu pryamih P d c a b a d c a b c P d c a b a d b c a b displaystyle P left frac d c a b a frac d c a b c right P left frac d c a b frac ad bc a b right nbsp Zauvazhimo sho pri a b displaystyle a b nbsp dvi pryami paralelni Yaksho pri comu c d displaystyle c neq d nbsp pryami rizni ta ne mayut peretiniv v inshomu zh vipadku pryami zbigayutsya Vikoristannya odnoridnih koordinat Redaguvati Pri vikoristanni odnoridnih koordinat tochka peretinu dvoh yavno zadanih pryamih mozhe buti znajdena dosit prosto U 2 vimirnomu prostori bud yaka tochka mozhe buti viznachena yak proyekciya 3 mirnoyi tochki zadanoyi trijkoyu x y w displaystyle x y w nbsp Vidobrazhennya 3 mirnih koordinat u 2 mirni vidbuvayetsya za formuloyu x y x w y w displaystyle x y x w y w nbsp Prosto peretvoriti koordinati tochok 2 vimirnomu prostoru v odnoridni koordinati pririvnyavshi tretyu koordinatu odinici x y 1 displaystyle x y 1 nbsp Pripustimo sho mi hochemo znajti peretin dvoh neskinchennih pryamih u 2 vimirnomu prostori yaki zadani formulami a 1 x b 1 y c 1 0 displaystyle a 1 x b 1 y c 1 0 nbsp ta a 2 x b 2 y c 2 0 displaystyle a 2 x b 2 y c 2 0 nbsp Mozhemo zapisati ci dvi pryami v koordinatah pryamoyi en yak U 1 a 1 b 1 c 1 displaystyle U 1 a 1 b 1 c 1 nbsp ta U 2 a 2 b 2 c 2 displaystyle U 2 a 2 b 2 c 2 nbsp Peretin P displaystyle P nbsp dvoh pryamih todi prosto zadayetsya formulami 3 P a p b p c p U 1 U 2 b 1 c 2 b 2 c 1 a 2 c 1 a 1 c 2 a 1 b 2 a 2 b 1 displaystyle P a p b p c p U 1 times U 2 b 1 c 2 b 2 c 1 a 2 c 1 a 1 c 2 a 1 b 2 a 2 b 1 nbsp Yaksho c p 0 displaystyle c p 0 nbsp to pryami ne peretinayutsya Peretin n pryamih RedaguvatiIsnuvannya ta viraz dlya peretinu Redaguvati U dvomirnomu prostori Redaguvati U dvomirnomu prostori peretin v odnij tochci troh i bilshe pryamih majzhe napevno nemozhlivij Dlya togo shob viznachiti chi peretinayutsya pryami v odnij tochci i yaksho peretinayutsya dlya poshuku tochki peretinu zapishemo i e rivnyannya pryamoyi a i 1 x a i 2 y b i displaystyle a i1 x a i2 y b i nbsp i 1 n yak a i 1 a i 2 x y T b i displaystyle a i1 quad a i2 x quad y T b i nbsp i skomponuyemo ci rivnyannya v matrichnomu viglyadi A w b displaystyle Aw b nbsp de i m ryadkom matrici n 2 bude a i 1 a i 2 displaystyle a i1 a i2 nbsp vidpovidno w ce 2 1 vektor x y T a i j element vektora stovpcya b dorivnyuye bi i 1 n Yaksho matricya A maye nezalezhni stovpci yiyi rang dorivnyuye 2 Todi i lishe todi koli rang rozshirenoyi matrici A b dorivnyuye 2 isnuye rishennya matrichnogo rivnyannya i takim chinom isnuye tochka peretinu n pryamih Tochka peretinu yaksho vona isnuye znahoditsya tak w A g b A T A 1 A T b displaystyle w A g b A T A 1 A T b nbsp de A g displaystyle A g nbsp ye psevdoobernena matricya do matrici A displaystyle A nbsp Yak alternativa rishennya mozhe buti znajdeno shlyahom spilnogo rozv yazannya dvoh nezalezhnih rivnyan Ale yaksho rang matrici A dorivnyuye 1 a rang rozshirenoyi matrici dorivnyuye 2 rozv yazkiv nemaye U razi zh koli rang rozshirenoyi matrici dorivnyuye 1 vsi pryami zbigayutsya U trivimirnomu prostori Redaguvati Predstavlenij vishe pidhid poshiryuyetsya na trivimirnij prostir U trivimirnomu ta n vimirnih prostorah navit dvi pryami majzhe napevno ne peretinayutsya Pari neparalelnih pryamih yaki ne peretinayutsya nazivayutsya perehresnimi Ale koli peretin isnuye jogo mozhna znajti nastupnim chinom U trivimirnomu prostori pryama predstavlyayetsya peretinom dvoh ploshin kozhna z yakih zadayetsya formuloyu a i 1 a i 2 a i 3 x y z T b i displaystyle a i1 quad a i2 quad a i3 x quad y quad z T b i nbsp Todi mnozhina n pryamih mozhe buti predstavlena u viglyadi 2n rivnyan vid 3 vimirnogo koordinatnogo vektora w x y z T A w b displaystyle Aw b nbsp de A dorivnyuye 2n 3 i b dorivnyuye 2n 1 Yak i ranishe isnuye yedina tochka peretinu todi i tilki todi koli A ta rozshirena matricya A b mayut maksimalnij rang yaksho peretin isnuye to vin zadayetsya formuloyu w A T A 1 A T b displaystyle w A T A 1 A T b nbsp Najblizhcha tochka perehresnih pryamih Redaguvati U dvoh chi bilshe vimirah zazvichaj mozhna znajti tochku yaka ye najblizhchoyu do dvoh chi bilshe pryamih u sensi najmenshih kvadrativ U dvoh vimirah Redaguvati U dvovimirnomu prostori spochatku predstavlyayut pryamu i displaystyle i nbsp yak paru ob yektiv tochku p i displaystyle p i nbsp na pryamij ta odinichnij vektor normali n i displaystyle hat n i nbsp perpendikulyarnij do ciyeyi pryamoyi Tobto yaksho x 1 displaystyle x 1 nbsp ta x 2 displaystyle x 2 nbsp tochki na pryamij 1 to nehaj p 1 x 1 displaystyle p 1 x 1 nbsp i n 1 0 1 1 0 x 2 x 1 x 2 x 1 displaystyle hat n 1 begin bmatrix 0 amp 1 1 amp 0 end bmatrix x 2 x 1 x 2 x 1 nbsp yakij ye odinichnim vektorom na pryamij povernutim na 90 gradusiv Zauvazhimo sho vidstan vid tochki x do pryamoyi p n displaystyle p hat n nbsp zadayetsya formuloyu d x p n x p n x p n x p n n x p displaystyle d x p n x p cdot hat n x p top hat n sqrt x p top hat n hat n top x p nbsp Otzhe kvadrat vidstani vid x do pryamoyi dorivnyuye d x p n 2 x p n n x p displaystyle d x p n 2 x p top hat n hat n top x p nbsp Suma kvadrativ vidstanej do naboru pryamih ye cilovoyu funkciyeyu E x i x p i n i n i x p i displaystyle E x sum i x p i top hat n i hat n i top x p i nbsp Viraz mozhna peretvoriti E x i x n i n i x x n i n i p i p i n i n i x p i n i n i p i x i n i n i x 2 x i n i n i p i i p i n i n i p i displaystyle begin aligned E x amp sum i x top hat n i hat n i top x x top hat n i hat n i top p i p i top hat n i hat n i top x p i top hat n i hat n i top p i amp x top left sum i hat n i hat n i top right x 2x top left sum i hat n i hat n i top p i right sum i p i top hat n i hat n i top p i end aligned nbsp Shob znajti minimum diferenciyuyemo po x i pririvnyayemo rezultat do nulya E x x 0 2 i n i n i x 2 i n i n i p i displaystyle frac partial E x partial x 0 2 left sum i hat n i hat n i top right x 2 left sum i hat n i hat n i top p i right nbsp tomu i n i n i x i n i n i p i displaystyle left sum i hat n i hat n i top right x sum i hat n i hat n i top p i nbsp zvidki x i n i n i 1 i n i n i p i displaystyle x left sum i hat n i hat n i top right 1 left sum i hat n i hat n i top p i right nbsp U trivimirnomu prostori Redaguvati Hocha v prostorah vishe dvoh normal n i displaystyle hat n i nbsp ne viznachayetsya odnoznachno yiyi mozhna uzagalniti na bud yaku rozmirnist yaksho zauvazhiti sho n i n i displaystyle hat n i hat n i top nbsp ye prosto simetrichnoyu matriceyu usi vlasni znachennya yakoyi dorivnyuyut 1 za vinyatkom nulovogo vlasnogo znachennya v napryamku vzdovzh pryamoyi yaka viznachaye napivnormu na vidstani mizh tochkoyu p i displaystyle p i nbsp ta inshoyu tochkoyu na yakij dosyagayetsya vidstan do pryamoyi U prostori dovilnoyi vimirnosti yaksho v i displaystyle hat v i nbsp ce odinichnij vektor uzdovzh i yi liniyi todi n i n i displaystyle hat n i hat n i top nbsp peretvoryuyetsya na I v i v i displaystyle I hat v i hat v i top nbsp de E odinichna matricya a todi 4 x i E v i v i 1 i E v i v i p i displaystyle x left sum i E hat v i hat v i top right 1 left sum i E hat v i hat v i top p i right nbsp Uzagalnennya Redaguvati Dlya togo shob znajti tochku peretinu naboru pryamih obchislyuyemo tochku z minimalnoyu vidstannyu do nih Kozhna pryama viznachayetsya tochkoyu a i displaystyle a i nbsp ta vektorom odinichnoyi dovzhini n i displaystyle n i nbsp Kvadrat vidstani vid tochki p displaystyle p nbsp do odniyeyi z pryamih obchislyuyetsya za teoremoyu Pifagora d i 2 p a i 2 p a i T n i 2 p a i T p a i p a i T n i 2 displaystyle d i 2 left left left p a i right right right 2 left left p a i right T n i right 2 left p a i right T left p a i right left left p a i right T n i right 2 nbsp De p a i T n i displaystyle left p a i right T n i nbsp ye proyekciya p a i displaystyle left p a i right nbsp na i displaystyle i nbsp tu pryamu Suma kvadrativ vidstanej do vsih pryamih stanovit i d i 2 i p a i T p a i p a i T n i 2 displaystyle underset i mathop sum d i 2 underset i mathop sum left left p a i right T left p a i right left left p a i right T n i right 2 right nbsp Shob minimizuvati cej viraz vizmemo pohidnu po p displaystyle p nbsp i 2 p a i 2 p a i T n i n i 0 displaystyle underset i mathop sum left 2 left p a i right 2 right left p a i right T n i n i 0 nbsp i p a i i n i n i T p a i displaystyle underset i mathop sum left p a i right underset i mathop sum left n i n i T right left p a i right nbsp V rezultati i n i n i T I p i n i n i T I a i displaystyle underset i mathop sum left n i n i T I right p underset i mathop sum left n i n i T I right a i nbsp de I displaystyle I nbsp cye odinichna matricya Ce matricya S p C displaystyle S p C nbsp z rozv yazkom p S C displaystyle p S C nbsp S displaystyle S nbsp ye psevdoobernena matricya do S displaystyle S nbsp Div takozh RedaguvatiPeretin vidrizkiv Proyektivna ploshina Proyekciya tochki na pryamu Aksioma paralelnosti Evklida Peretin evklidova geometriya Dva vidrizkiPrimitki Redaguvati Weisstein Eric W Line Line Intersection From MathWorld A Wolfram Web Resource Procitovano 10 sichnya 2008 Antonio Franklin 1992 Chapter IV 6 Faster Line Segment Intersection U Kirk David Graphics Gems III Academic Press Inc s 199 202 ISBN 0 12 059756 X Homogeneous coordinates robotics stanford edu Procitovano 18 serpnya 2015 Traa Johannes Least Squares Intersection of Lines Arhiv originalu za 23 listopada 2018 Procitovano 30 serpnya 2018 Posilannya RedaguvatiVidstan mizh pryamimi ta vidrizkami z yih najbilsh blizkoyu tochkoyu u vimirah 2 3 abo bilshe angl Otrimano z https uk wikipedia org w index php title Peretin pryamih amp oldid 38623065