www.wikidata.uk-ua.nina.az
V matematici peretvorennya Radona ce integralne peretvorennya yake perevodit funkciyu f viznachenu na ploshini v funkciyu Rf viznachenu na dvovimirnomu prostori z pryamih na ploshini znachennya yakoyi u pevnij pryamij dorivnyuye krivolinijnomu integralu vid ciyeyi funkciyi nad ciyeyu pryamoyu Peretvorennya Radona Karti f na x y oblast Rf na a z oblast Peretvorennya Radona dlya harakteristichnoyi funkciyi dvoh kvadrativ zobrazhenih na malyunku nizhche Bilsh svitli oblasti vkazuyut na bilshi znachennya funkcij Chornij kolir poznachaye nul Pochatkova funkciya dorivnyuye odinici na bilij oblasti i nulyu v temnij oblasti Peretvorennya bulo vvedene v 1917 roci Joganom Radonom en 1 yakij takozh nadav formulu zvorotnogo peretvorennya Krim togo Radon viznachiv formuli dlya peretvorennya v troh vimirah v yakih integruvannya vidbuvayetsya na ploshini integruvannya po liniyah vidome yak rentgenivske peretvorennya en Piznishe ce bulo uzagalneno do evklidovih prostoriv bilsh visokogo rozmiru a shirshe v konteksti integralnoyi geometriyi Kompleksnij analog peretvorennya Radona vidomij yak peretvorennya Penrouza en Peretvorennya Radona shiroko zastosovuyetsya dlya tomografiyi stvorennya zobrazhennya z proyekcijnih danih pov yazanih iz skanuvannyam poperechnogo pererizu ob yekta Zmist 1 Poyasnennya 2 Viznachennya 2 1 Bilsh zagalne viznachennya 3 Zv yazok z peretvorennyam Fur ye 4 Podvijne peretvorennya 4 1 Perepletennya vlasnosti 5 Pidhodi do rekonstrukciyi 5 1 Formula inversiyi radonu 5 2 Neregulyarna pohibka 5 3 Iterativni metodi rekonstrukciyi 6 Formuli inversiyi 7 Peretvorennya Radona v algebrichnij geometriyi 8 Zastosuvannya 9 Div takozh 10 Primitki 11 Spisok literaturi 12 Podalshe chitannya 13 PosilannyaPoyasnennya red Yaksho funkciya f displaystyle f nbsp predstavlyaye neviznachenu shilnist todi peretvorennya Radona predstavlyaye dani proyekciyi otrimani yak vihid tomografichnogo skanuvannya Otzhe zvorotne peretvorennya Radona mozhe buti vikoristane dlya rekonstrukciyi pochatkovoyi shilnosti z danih proyekciyi i takim chinom vono formuye matematichnu osnovu tomografichnoyi rekonstrukciyi en takozh vidomu yak iterativna rekonstrukciyi Dani pro peretvorennya Radona chasto nazivayut sinogramoyu oskilki peretvorennya Radona v centri tochkovogo dzherela ye sinusoyidoyu Otzhe peretvorennya Radona dlya ryada dribnih predmetiv grafichno postaye yak kilkist rozmitih sinusoyid z riznimi amplitudami ta fazami Peretvorennya Radona korisna pri komp yuternij tomografiyi KVT skanuvannya takozh zastosovuyetsya u skanerah shtrih kodiv elektronnij mikroskopiyi makromolekulyarnih kompleksah takih yak virusi ta bilkovi kompleksi reflektornij sejsmologiyi ta pri virishenni giperbolichnih chastkovih diferencialnih rivnyan Viznachennya red Nehaj ƒ x ƒ x y funkciya yaka zadovolnyaye trom umovam regulyarnosti 2 ƒ x y neperervna podvijnij integral f x y x 2 y 2 d x d y displaystyle int int frac f x y sqrt x 2 y 2 dxdy nbsp sho viznachenij na vsij ploshini zbigayetsya dlya bud yakoyi dovilnoyi tochki x y displaystyle x y nbsp na ploshini vikonuyetsya sho lim r 0 2 p f x r cos ϕ y r sin ϕ d ϕ 0 displaystyle lim r to infty int 0 2 pi f x r cos phi y r sin phi d phi 0 nbsp Peretvorennya Radona Rƒ ye funkciyeyu viznachenoyu na prostori pryamih L v prostori R2 krivolinijno integrovanoyu vzdovzh kozhnoyi takoyi pryamoyi yak R f L L f x d x displaystyle Rf L int L f mathbf x d mathbf x nbsp Konkretnishe parametrizaciyu bud yakoyi pryamoyi L shodo dovzhini dugi z zavzhdi mozhna zapisati yak x z y z z sin a s cos a z cos a s sin a displaystyle x z y z Big z sin alpha s cos alpha z cos alpha s sin alpha Big nbsp de s vidstan L vid pochatku i a displaystyle alpha nbsp kut yakij normalnij do L vektor utvoryuye z vissyu h Zvidsi viplivaye sho velichini a s mozhna vvazhati koordinatami na prostori vsih linij v R2 a peretvorennya Radona v cih koordinatah viznachayut yak R f a s f x z y z d z f z sin a s cos a z cos a s sin a d z displaystyle begin aligned Rf alpha s amp int infty infty f x z y z dz amp int infty infty f big z sin alpha s cos alpha z cos alpha s sin alpha big dz end aligned nbsp Bilsh zagalne viznachennya red Nehaj f displaystyle f nbsp funkciya na R n displaystyle mathbb R n nbsp integrovuvana po kozhnij giperploshini Nehaj takozh P n displaystyle mathbb P n nbsp prostir usih giperploshin u R n displaystyle mathbb R n nbsp nadilene vidpovidnoyu topologiyeyu Peretvorennya Radona funkciyi f displaystyle f nbsp viznachayetsya yak funkciya f displaystyle hat f nbsp na P n displaystyle mathbb P n nbsp i zadayetsya formuloyuf 3 3 f x d m x displaystyle hat f xi int xi f x dm x nbsp de d m displaystyle dm nbsp evklidova mira na giperploshini 3 displaystyle xi nbsp Giperploshinu 3 P n displaystyle xi in mathbb P n nbsp mozhna zapisati u viglyadi 3 x P n x w p displaystyle xi x in mathbb P n x omega p nbsp de displaystyle cdot cdot nbsp zvichajnij skalyarnij dobutok w w 1 w n displaystyle omega omega 1 omega n nbsp odinichnij vektor ta p R displaystyle p in mathbb R nbsp Pari w p displaystyle omega p nbsp ta w p displaystyle omega p nbsp privodyat do odniyeyi i toyi samoyi giperploshini 3 displaystyle xi nbsp vidobrazhennya w p 3 displaystyle omega pi rightarrow xi nbsp ye dvokratne nakrittya S n 1 R displaystyle mathbb S n 1 times mathbb R nbsp na P n displaystyle mathbb P n nbsp Takim chinom prostir P n displaystyle mathbb P n nbsp maye kanonichnu strukturu mnogovidu vidnosno yakoyi ce nakrivayuche vidobrazhennya diferencijovuvane j regulyarne 3 Zv yazok z peretvorennyam Fur ye red nbsp Obchislennya dvovimirnogo peretvorennya Radona cherez dva peretvorennya Fur ye Peretvorennya Radona tisno pov yazane z peretvorennyam Fur ye Mi viznachayemo tut universalne peretvorennya Fur ye yak f w f x e 2 p i x w d x displaystyle hat f omega int infty infty f x e 2 pi ix omega dx nbsp i dlya funkciyi dlya 2 h vektoriv x x y displaystyle mathbf x x y nbsp f w f x e 2 p i x w d x d y displaystyle hat f mathbf w int limits infty infty int limits infty infty f mathbf x e 2 pi i mathbf x cdot mathbf w dx dy nbsp Dlya zruchnosti poznachte R a f s R f a s displaystyle mathcal R alpha f s mathcal R f alpha s nbsp Todi teorema Fur ye pro zriz funkciyi en konstatuye R a f s f s n a displaystyle widehat mathcal R alpha f sigma hat f sigma mathbf n alpha nbsp de n a cos a sin a displaystyle mathbf n alpha cos alpha sin alpha nbsp Takim chinom dvovimirne peretvorennya Fur ye pochatkovoyi funkciyi vzdovzh liniyi pid kutom nahilu a displaystyle alpha nbsp ce peretvorennya Fur ye dlya odniyeyi zminnoyi nad peretvorennyam Radona otrimane pid kutom nahila a displaystyle alpha nbsp ciyeyi funkciyi Cej fakt mozhe buti vikoristanij dlya obchislennya yak peretvorennya Radona tak i zvorotnoyi funkciyi Rezultat mozhna uzagalniti dlya n mirnogo vipadku f r a R f a s e 2 p i s r d s displaystyle hat f r alpha int infty infty mathcal R f alpha s e 2 pi isr ds nbsp Podvijne peretvorennya red Podvijne peretvorennya Radona ye svoyeridnim primikannyam do peretvorennya Radona Pochinayuchi z funkciyi g na prostori Sn podvijne peretvorennya Radona funkciya R g displaystyle mathcal R g nbsp na Rn yaka viznachayetsya v takij sposib R g x x 3 g 3 d m 3 displaystyle mathcal R g x int x in xi g xi d mu xi nbsp Integral tut beretsya za mnozhinu vsih giperploshin sho prohodyat cherez tochku h Rn a mira d ye unikalnoyu miroyu jmovirnosti na mnozhini 3 x 3 displaystyle xi x in xi nbsp ye invariantom pri obertanni navkolo tochki x Konkretno dlya dvovimirnogo peretvorennya Radona podvijne peretvorennya zadayetsya takim chinom R g x 1 2 p a 0 2 p g a n a x d a displaystyle mathcal R g x frac 1 2 pi int alpha 0 2 pi g alpha mathbf n alpha cdot mathbf x d alpha nbsp U konteksti obrobki zobrazhen podvijne peretvorennya zazvichaj nazivayut zvorotnoyu proyekciyeyu 4 oskilki vono prijmaye funkciyu viznachenu v kozhnij liniyi v ploshini i rozmazuye abo proektuye yiyi nazad po liniyi dlya stvorennya zobrazhennya Perepletennya vlasnosti red Nehaj D poznachaye operator Laplasa na R n D 2 x 1 2 2 x n 2 displaystyle Delta frac partial 2 partial x 1 2 cdots frac partial 2 partial x n 2 nbsp Ce prirodnij obertalnij invariantnij diferencialnij operator drugogo poryadku Na Sn radialna druga pohidna L f a s 2 s 2 f a s displaystyle Lf alpha s equiv frac partial 2 partial s 2 f alpha s nbsp takozh invariantna vidnosno obertannya Peretvorennya Radona ta jogo podvijnij ye perepletenimi operatorami dlya cih dvoh diferencialnih operatoriv u tomu sensi sho 5 R D f L R f R L g D R g displaystyle mathcal R Delta f L mathcal R f quad mathcal R Lg Delta mathcal R g nbsp Analizuyuchi rishennya hvilovogo rivnyannya v dekilkoh prostorovih vimirah vlastivist perepletennya prizvodit do postupalnogo predstavlennya Laksa i Filipsa 6 U vizualizaciyi 7 ta chiselnomu analizi 8 ce vikoristovuyetsya dlya zmenshennya bagatovimirnih zadach na odnovimirni yak metod rozmirnogo rozsheplennya Pidhodi do rekonstrukciyi red Proces rekonstrukciyi stvoryuye zobrazhennya abo funkciyu f displaystyle f nbsp u poperednomu rozdili z jogo proyekcijnih danih Rekonstrukciya obernena zadacha Formula inversiyi radonu red U dvovimirnomu vipadku najbilsh chasto vikoristovuyetsya analitichna formula dlya vidnovlennya f displaystyle f nbsp znayuchi jogo peretvorennya Radona za dopomogoyu formuli vidfiltrovanoyi zvorotnoyi proyekciyi abo formuli inversiyi Radona f x 0 p R f 8 h x n 8 d 8 displaystyle f mathbf x int 0 pi mathcal R f cdot theta h left langle mathbf x mathbf n theta right rangle d theta nbsp 9 de h displaystyle h nbsp take sho h k k displaystyle hat h k k nbsp 10 Yadro zgortki h displaystyle h nbsp v deyakij literaturi zgaduyetsya yak filtr Rampa Neregulyarna pohibka red Intuyitivno u vidfiltrovanij formuli zvorotnogo proektuvannya za analogiyeyu z diferenciaciyeyu dlya yakoyi d d x f k i k f k displaystyle left widehat frac d dx f right k ik widehat f k nbsp mi bachimo sho filtr vikonuye operaciyu analogichnu operaciyi vzyattya pohidnoyi Grubo kazhuchi todi filtr robit ob yekti bilsh singulyarnimi Kilkisne tverdzhennya pro neregulyarnu pohibku radonovoyi inversiyi polyagaye v nastupnomu Mi mayemo R R g k 1 k g k displaystyle widehat mathcal R mathcal R g k frac 1 mathbf k hat g mathbf k nbsp de R displaystyle mathcal R nbsp ye ranishe viznachenim primikannyam en do Radonovogo peretvorennya Takim chinom dlya g x e i k 0 x displaystyle g mathbf x e i left langle mathbf k 0 mathbf x right rangle nbsp R R g 1 k 0 e i k 0 x displaystyle mathcal R mathcal R g frac 1 mathbf k 0 e i left langle mathbf k 0 mathbf x right rangle nbsp Skladnij pokaznik e i k 0 x displaystyle e i left langle mathbf k 0 mathbf x right rangle nbsp takim chinom ye vlasnoyu funkciyeyu R R displaystyle mathcal R mathcal R nbsp iz vlasnim znachennyam 1 k 0 displaystyle frac 1 mathbf k 0 nbsp Takim chinom singulyarni znachennya R displaystyle mathcal R nbsp ye 1 k displaystyle sqrt frac 1 mathbf k nbsp Oskilki ci osoblivi znachennya mayut pryamuvati do 0 R 1 displaystyle mathcal R 1 nbsp ye neobmezhenim 10 Iterativni metodi rekonstrukciyi red Porivnyano z metodom vidfiltrovanogo zvorotnogo proektuvannya iterativna rekonstrukciya koshtuye velikih vitrat na obchislennya obmezhuyuchi yiyi praktichne vikoristannya Odnak cherez nedobrozichlivist inversiyi radonu metod filtruvanoyi zvorotnoyi proyekciyi mozhe viyavitisya nezdijsnennim pri nayavnosti rozrivu abo shumu Metodi iterativnoyi rekonstrukciyi napriklad iterativna rozridzhena asimptotichna minimalna riznicya en 11 mozhut zabezpechiti zmenshennya artefaktiv metalu zmenshennya shumu ta dozi dlya rekonstrukciyi rezultatu sho privertaye velikij naukovij interes po vsomu svitu Formuli inversiyi red Yavni ta obchislyuvalno efektivni formuli inversiyi dlya peretvorennya Radona ta jogo podvijnosti Peretvorennya Radona v n rozmirah mozhe buti invertovanim formuloyu 12 c n f D n 1 2 R R f displaystyle c n f Delta n 1 2 R Rf nbsp de c n 4 p n 1 2 G n 2 G 1 2 displaystyle c n 4 pi n 1 2 frac Gamma n 2 Gamma 1 2 nbsp a potuzhnist Laplaciana D n 1 2 viznachayetsya yak psevdodiferencialnij operator abo pri neobhidnosti peretvorennyam Fur ye F D n 1 2 ϕ 3 2 p 3 n 1 F ϕ 3 displaystyle left mathcal F Delta n 1 2 phi right xi 2 pi xi n 1 mathcal F phi xi nbsp Dlya obchislyuvalnih cilej potuzhnist Laplaciani zmishuyetsya z podvijnim peretvorennyam R shob otrimati 13 c n f R d n 1 d s n 1 R f n o d d R H s d n 1 d s n 1 R f n e v e n displaystyle c n f begin cases R frac d n 1 ds n 1 Rf amp n rm odd R H s frac d n 1 ds n 1 Rf amp n rm even end cases nbsp de Hs peretvorennya Gilberta vidnosno zminnoyi s U dvoh vimirah operator Hsd ds z yavlyayetsya v obrobci zobrazhen yak rampovij filtr 14 Mozhna legko dovesti z teoremi Fur ye pro zriz i zmini zminnih dlya integraciyi sho dlya kompaktno pidtrimuvanoyi bezperervnoyi funkciyi ƒ dlya dvoh zminnihcherez f 1 2 R H s d d s R f displaystyle f frac 1 2 R H s frac d ds Rf nbsp Takim chinom v konteksti obrobki zobrazhen vihidne zobrazhennya ƒ mozhe buti vidnovleno z danih sinogrami Rƒ shlyahom zastosuvannya rampovogo filtru u s displaystyle s nbsp zminnij a potim zvorotnogo proektuvannya Oskilki etap filtraciyi mozhe buti vikonanij efektivno napriklad vikoristovuyuchi metodi cifrovoyi obrobki signalu a odin krok zvorotnogo proektuvannya ye prosto nakopichennyam znachen u pikselyah zobrazhennya sho prizvodit do visokoefektivnogo a otzhe shiroko vikoristovuvanogo algoritmu Yavna formula inversiyi otrimana ostannim metodom 4 f x 1 2 2 p 1 n 1 n 1 2 S n 1 n 1 s n 1 R f a a x d a displaystyle f x frac 1 2 2 pi 1 n 1 n 1 2 int S n 1 frac partial n 1 partial s n 1 Rf alpha alpha cdot x d alpha nbsp yaksho n neparne i f x 2 p n 1 n 2 1 q S n 1 n 1 s n 1 R f a a x q d a d q displaystyle f x 2 pi n 1 n 2 int infty infty frac 1 q int S n 1 frac partial n 1 partial s n 1 Rf alpha alpha cdot x q d alpha dq nbsp yaksho n parne Podvijne peretvorennya takozh mozhe buti oberneno analogichnoyu formuloyu c n g L n 1 2 R R g displaystyle c n g L n 1 2 R R g nbsp Peretvorennya Radona v algebrichnij geometriyi red V algebrayichnij geometriyi peretvorennya Radona takozh vidome yak peretvorennya Brilinskogo Radona buduyetsya nastupnim chinom Pishut P d p 1 H p 2 P d displaystyle mathbf P d stackrel p 1 gets H stackrel p 2 to mathbf P vee d nbsp dlya universalnoyi giperploshini tobto H skladayetsya z par x h de x tochka v d vimirnomu proektivnomu prostori P d displaystyle mathbf P d nbsp i h tochka u podvijnomu proyekcijnomu prostori inshimi slovami x ye liniyeyu cherez pochatok u d 1 vimirnomu afinnomu prostori a h giperploshina u comu prostori takij sho x mistitsya v h Todi peretvorennya Brilinkskogo Radona ye funktorom mizh vidpovidnimi pohidnimi kategoriyami en etalevih puchkiv en R a d R p 2 p 1 D P d D P d displaystyle Rad Rp 2 p 1 D mathbf P d to D mathbf P vee d nbsp Osnovna teorema pro ce peretvorennya polyagaye v tomu sho ce peretvorennya proektuye ekvivalentnist kategorij perekruchenih puchkiv en na proektivnomu prostori ta jogo podvijnomu proektivnomu prostori azh do postijnih puchkiv 15 Zastosuvannya red Rentgenivska transformaciya en ye najbilsh shiroko vikoristovuvanim osoblivim vipadkom ciyeyi konstrukciyi i yiyi otrimuyut shlyahom integraciyi z pryamimi liniyami Div takozh red Periodograma en Vidpovidnij filtr en Dekonvolyuciya Rentgenivska transformaciya en Funkciya peretvorennya en Peretvorennya Gafa koli vono pishetsya u bezperervnij formi duzhe shozhe yaksho ne ekvivalentne peretvorennyu Radona 16 Teorema Koshi Kroftona ye tisno pov yazanoyu formuloyu dlya obchislennya dovzhini krivih u prostori Shvidke peretvorennya Fur yePrimitki red Radon 1917 Radon J December 1986 On the determination of functions from their integral values along certain manifolds IEEE Transactions on Medical Imaging 5 4 170 176 PMID 18244009 doi 10 1109 TMI 1986 4307775 S Helgason The Radon transform a b Roerdink 2001 Helgason 1984 Lemma I 2 1 Lax P D Philips R S 1964 Scattering theory Bull Amer Math Soc 70 130 142 doi 10 1090 s0002 9904 1964 11051 x Bonneel N Rabin J Peyre G Pfister H 2015 Sliced and Radon Wasserstein Barycenters of Measures Journal of Mathematical Imaging and Vision 51 22 25 doi 10 1007 s10851 014 0506 3 Rim D 2018 Dimensional Splitting of Hyperbolic Partial Differential Equations Using the Radon Transform SIAM J Sci Comput 40 A4184 A4207 arXiv 1705 03609 doi 10 1137 17m1135633 Candes 2016a a b Candes 2016b Abeida Habti Zhang Qilin Li Jian Merabtine Nadjim 2013 Iterative Sparse Asymptotic Minimum Variance Based Approaches for Array Processing IEEE Transactions on Signal Processing IEEE 61 4 933 944 Bibcode 2013ITSP 61 933A ISSN 1053 587X arXiv 1802 03070 doi 10 1109 tsp 2012 2231676 Helgason 1984 Theorem I 2 13 Helgason 1984 Theorem I 2 16 Nygren 1997 Kiehl ta Weissauer 2001 van Ginkel Hendricks ta van Vliet 2004 Spisok literaturi red Radon Johann 1917 Uber die Bestimmung von Funktionen durch ihre Integralwerte langs gewisser Mannigfaltigkeiten Berichte uber die Verhandlungen der Koniglich Sachsischen Akademie der Wissenschaften zu Leipzig Mathematisch Physische Klasse Reports on the proceedings of the Royal Saxonian Academy of Sciences at Leipzig mathematical and physical section Leipzig Teubner 69 262 277 Translation Radon J Parks P C translator 1986 On the determination of functions from their integral values along certain manifolds IEEE Transactions on Medical Imaging 5 4 170 176 PMID 18244009 doi 10 1109 TMI 1986 4307775 Hazewinkel Michiel red 2001 Peretvorennya Radona Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Helgason Sigurdur 1984 Groups and Geometric Analysis Integral Geometry Invariant Differential Operators and Spherical Functions Academic Press ISBN 0 12 338301 3 Candes Emmanuel 2 lyutogo 2016a Applied Fourier Analysis and Elements of Modern Signal Processing Lecture 9 Candes Emmanuel 4 lyutogo 2016b Applied Fourier Analysis and Elements of Modern Signal Processing Lecture 10 Nygren Anders J 1997 Filtered Back Projection Tomographic Reconstruction of SPECT Data van Ginkel M Hendricks C L Luengo van Vliet L J 2004 A short introduction to the Radon and Hough transforms and how they relate to each other Arhiv originalu za 29 lipnya 2016 Podalshe chitannya red Lokenath Debnath Dambaru Bhatta 19 kvitnya 2016 Integral Transforms and Their Applications CRC Press ISBN 978 1 4200 1091 6 Deans Stanley R 1983 The Radon Transform and Some of Its Applications New York John Wiley amp Sons Helgason Sigurdur 2008 Geometric analysis on symmetric spaces Mathematical Surveys and Monographs 39 vid 2nd Providence R I American Mathematical Society ISBN 978 0 8218 4530 1 MR 2463854 doi 10 1090 surv 039 Herman Gabor T 2009 Fundamentals of Computerized Tomography Image Reconstruction from Projections vid 2nd Springer ISBN 978 1 85233 617 2 Hazewinkel Michiel red 2001 Radon transform Matematichna enciklopediya Springer ISBN 978 1 55608 010 4 Natterer Frank June 2001 The Mathematics of Computerized Tomography Classics in Applied Mathematics 32 Society for Industrial and Applied Mathematics ISBN 0 89871 493 1 Natterer Frank Wubbeling Frank 2001 Mathematical Methods in Image Reconstruction Society for Industrial and Applied Mathematics ISBN 0 89871 472 9 Kiehl Reinhardt Weissauer Rainer 2001 Weil conjectures perverse sheaves and l adic Fourier transform Springer ISBN 3 540 41457 6 MR 1855066 doi 10 1007 978 3 662 04576 3 Posilannya red Weisstein Eric W title angl na sajti Wolfram MathWorld Analytical projection the Radon transform video 10 veresnya 2015 Otrimano z https uk wikipedia org w index php title Peretvorennya Radona amp oldid 39733903