www.wikidata.uk-ua.nina.az
Matemati chne spodiva nnya 1 sere dnye zna chennya odna z osnovnih chislovih harakteristik kozhnoyi vipadkovoyi velichini Vono ye uzagalnenim ponyattyam serednogo znachennya sukupnosti chisel na toj vipadok koli elementi mnozhini znachen ciyeyi sukupnosti mayut riznu vagu cinu vazhlivist prioritet sho ye harakternim dlya znachen vipadkovoyi zminnoyi 2 V teoriyi jmovirnostej matematichne spodivannya vipadkovoyi velichini intuyitivno ye serednim znachennyam pri dovgostrokovomu povtorenni odnogo i togo zh eksperimenta yakij vono predstavlyaye Napriklad matematichne spodivannya pri pidkidanni shestigrannoyi gralnoyi kistochki stanovit 3 5 oskilki serednye znachennya z usih chisel yaki mozhut vipasti stanovit 3 5 iz tim yak kilkist pidkidan pryamuye do neskinchennosti Inshimi slovami zakon velikih chisel stverdzhuye sho serednye arifmetichne vsih znachen majzhe pevno zbigayetsya do matematichnogo spodivannya iz tim yak kilkist povtoriv danogo eksperimentu pryamuye do neskinchennosti Matematichne spodivannya takozh inodi nazivayut spodivannyam serednim serednim znachennyam abo pershim momentom Oskilki vipadkova velichina mozhe buti diskretnoyu abo zadana gustinoyu rozpodilu jmovirnostej tomu teoriya jmovirnostej navodit dva oznachennya matematichnogo spodivannya U bilsh praktichnomu rozuminni matematichne spodivannya diskretnoyi vipadkovoyi velichini ye serednim zvazhenim po imovirnosti dlya vsih mozhlivih znachen Inshimi slovami kozhne mozhlive znachennya vipadkovoyi velichini faktichno ye pomnozhene na jogo imovirnist viniknennya i otrimanij dobutok skladayetsya u zagalnu sumu yaka utvoryuye matematichne spodivannya Toj samij princip zastosovuyetsya i dlya absolyutno neperervnih vipadkovih velichin za vinyatkom togo sho suma zaminyuyetsya na integral dlya danoyi vipadkovoyi velichini po vidnoshennyu do yiyi funkciyi gustini imovirnostej Formalne viznachennya ohoplyuye obidva ci vipadki a takozh peredbachaye rozpodili yaki ne ye ni diskretnimi ni absolyutno neperervnimi matematichne spodivannya vipadkovoyi velichini ye integralom argumentom yakogo ye cya vipadkova velichina vidpovidno do yiyi miri imovirnosti 3 4 Matematichne spodivannya ne isnuye dlya vipadkovih velichin sho mayut pevni rozpodili imovirnostej iz velikimi hvostami en yak napriklad Rozpodil Koshi 5 Dlya takih vipadkovih velichin dovgij hvist rozpodilu ne peredbachaye sho suma abo integral budut zbizhnimi Matematichne spodivannya ye klyuchovim aspektom yakij harakterizuye rozpodil jmovirnostej vono ye odnim iz riznovidiv koeficiyenta zsuvu Na protivagu jomu dispersiya ye miroyu rozsiyannya mozhlivih znachen vipadkovoyi velichini dovkola matematichnogo spodivannya Dispersiya sama po sobi viznachayetsya v terminah dvoh matematichnih spodivan ce matematichne spodivannya kvadratichnogo vidhilennya znachen vipadkovoyi velichini vid matematichnogo spodivannya Zmist 1 Oznachennya 1 1 1 Prikladi 2 Oznachennya 2 3 Deyaki formuli dlya obchislennya matematichnogo spodivannya 4 Osnovni vlastivosti matematichnogo spodivannya 4 1 UNIQ postMath 00000028 QINU 4 2 Yaksho X Y todi E X E Y 4 3 Matematichne spodivannya dlya staloyi 4 4 Linijnist 4 5 E X isnuye i ye skinchennim todi i tilki todi koli E X ye skinchennim 4 6 Yaksho X 0 todi E X 0 4 7 Monotonnist 4 8 Yaksho UNIQ postMath 00000086 QINU majzhe skriz i UNIQ postMath 00000087 QINU ye skinchennoyu todi tak samo i dlya UNIQ postMath 00000088 QINU 4 9 Yaksho UNIQ postMath 00000093 QINU ta UNIQ postMath 00000094 QINU todi UNIQ postMath 00000095 QINU 4 9 1 Protilezhnij priklad dlya neskinchennoyi miri 4 10 Vlastivist ekstremalnosti 4 11 Nevirodzhenist 4 12 Yaksho UNIQ postMath 000000DE QINU todi UNIQ postMath 000000DF QINU majzhe pevno 4 12 1 Naslidok yaksho UNIQ postMath 000000F8 QINU todi UNIQ postMath 000000F9 QINU majzhe pevno 4 12 2 Naslidok yaksho UNIQ postMath 000000FA QINU todi UNIQ postMath 000000FB QINU majzhe pevno 4 13 UNIQ postMath 000000FC QINU 4 14 Nemultiplikativnist 4 15 Protilezhnij priklad UNIQ postMath 0000010A QINU nezvazhayuchi na ce UNIQ postMath 0000010B QINU potochkovo 4 16 Zlichenna neaditivnist 4 17 Zlichenna aditivnist dlya ne vid yemnih vipadkovih velichin 5 Nerivnosti 5 1 Nerivnist Koshi Bunyakovskogo Shvarca 5 2 Nerivnist Markova 5 3 Nerivnist Chebishova 5 4 Nerivnist Yensena 5 5 Nerivnist Lyapunova 5 6 Nerivnist Geldera 5 7 Nerivnist Minkovskogo 6 Rozrahunok granic pid znakom operatora UNIQ postMath 00000157 QINU 6 1 Teorema pro monotonnu zbizhnist 6 2 Lema Fatu 6 3 Teorema pro mazhorovanu zbizhnist 7 Zv yazok iz harakteristichnoyu funkciyeyu 8 Priklad vipadkovoyi velichini sho ne maye matematichnogo spodivannya 9 Zastosuvannya 10 Div takozh 11 Dzherela 12 PrimitkiOznachennya 1 RedaguvatiNehaj diskretna vipadkova zminna X displaystyle X nbsp mozhe nabuvati znachennya x 1 x 2 displaystyle x 1 x 2 ldots nbsp vidpovidno z jmovirnostyami p x 1 p x 2 displaystyle p x 1 p x 2 ldots nbsp prichomu x p x 1 displaystyle sum x p x 1 nbsp Oznachennya Chebishova Matematichnim spodivannyam bud yakoyi velichini nazivayetsya suma vsih mozhlivih dlya neyi znachen pomnozhenih na yihni jmovirnosti 6 m E X x x p x displaystyle mu equiv operatorname E X sum x x p x nbsp de m displaystyle mu nbsp ce serednye znachennya vipadkovoyi velichini X displaystyle X nbsp oblastyu mozhlivih znachen yakoyi ye mnozhina X x displaystyle left X x right nbsp E displaystyle operatorname E nbsp operator matematichnogo spodivannya E X displaystyle operatorname E X nbsp matematichne spodivannya velichini X displaystyle X nbsp nbsp Ilyustraciya zbizhnosti serednogo dlya poslidovnosti kidannya gralnogo kubika do spodivannya 3 5 pri postijnomu zbilshenni kilkosti sprob Prikladi Redaguvati Nehaj X displaystyle X nbsp zadaye mnozhinu podij pri pidkidanni gralnoyi kistki iz shistma storonami Rezultatom bude kilkist tochok na verhnij grani pislya pidkidannya gralnoyi kistki Mozhlivimi znachennyami yaki prijmatime X displaystyle X nbsp ye 1 2 3 4 5 i 6 vsi ye rivnojmovirnimi kozhne znachennya maye jmovirnist 1 6 Matematichnim spodivannyam dlya X displaystyle X nbsp budeE X 1 1 6 2 1 6 3 1 6 4 1 6 5 1 6 6 1 6 3 5 displaystyle operatorname E X 1 cdot frac 1 6 2 cdot frac 1 6 3 cdot frac 1 6 4 cdot frac 1 6 5 cdot frac 1 6 6 cdot frac 1 6 3 5 nbsp dd Yaksho pidkinuti gralnu kistku n displaystyle n nbsp raziv i rozrahuvati serednye serednye arifmetichne vsih rezultativ iz zbilshennyam n displaystyle n nbsp serednye bude majzhe pevne zbigatisya do znachennya spodivannya Cej fakt vidomij yak zakon velikih chisel Odnim iz prikladiv poslidovnosti desyati vipadan gralnoyi kistki ye 2 3 1 2 5 6 2 2 2 6 dlya yakogo serednye bude dorivnyuvati 3 1 sho vidriznyayetsya vid matematichnogo spodivannya 3 5 na chislo 0 4 Zblizhennya ye vidnosno povilnim jmovirnist sho serednye znahoditimetsya v mezhah 3 5 0 1 dorivnyuye 21 6 dlya desyati sprob 46 1 dlya sotni sprob i 93 7 dlya tisyachi sprob Div grafik na yakomu pokazani seredni dlya dovshih poslidovnostej kidannya gralnoyi kistki na yakomu vidno yak voni zbigayutsya do matematichnogo spodivannya iz znachennyam v 3 5 U zagalnomu vipadku shvidkist zblizhennya mozhna priblizno rozrahuvati za dopomogoyu napriklad nerivnosti Chebishova i teoremi Berri Essina en Pri gri v ruletku nevelika kulka mozhe potrapiti v odnu iz 38 pronumerovanih sekcij kolesa sho rozmisheni po kolu Koli koleso rozkruchuyut kulka udaryayetsya i ruhayetsya vipadkovim chinom doki ne zupinitsya v odnomu z sektoriv Nehaj vipadkova velichina X displaystyle X nbsp zadaye groshovij vigrash pri stavci v 1 na odne chislo pryama stavka Yaksho stavka vigraye sho trapitsya iz jmovirnistyu 1 38 vigrash stanovitime 35 v inshomu vipadku gravec vtrachaye stavku Ochikuvanim pributkom vid takoyi stavki budeE gain from 1 bet 1 37 38 35 1 38 0 0526 displaystyle operatorname E text gain from 1 text bet 1 cdot frac 37 38 35 cdot frac 1 38 0 0526 nbsp dd Tobto stavka v 1 koshtuvatime vtrati 0 0526 tochnishe yiyi spodivannyam ye 0 0526 Oznachennya 2 RedaguvatiNehaj vipadkova zminna 3 displaystyle xi nbsp zadana gustinoyu rozpodilu jmovirnostej p 3 x displaystyle p xi x nbsp x m i n lt x lt x m a x displaystyle x min lt x lt x max nbsp Matematichnim spodivannyam takoyi chislovoyi zminnoyi 3 displaystyle xi nbsp yaksho vono isnuye nazivayut integral uzyatij po oblasti isnuvannya yiyi gustini rozpodilu vid dobutku ciyeyi vipadkovoyi zminnoyi na yiyi gustinu rozpodilu tobto m E 3 X x p 3 x d x displaystyle mu equiv operatorname E xi int X xp xi x dx nbsp Matematichne podivannya isnuye yaksho cej integral absolyutno zbizhnij Deyaki formuli dlya obchislennya matematichnogo spodivannya RedaguvatiAbstraktnij integral sho figuruye v oznachenni matematichnogo spodivannya mozhna zaminiti vidpovidnim integralom Lebega Stiltyesa Rozglyanemo vipadok kompoziciyi borelivskoyi funkciyi f displaystyle f nbsp ta vipadkovoyi velichini 3 displaystyle xi nbsp E f 3 X f x d F 3 x displaystyle operatorname E f circ xi int X f x dF xi x nbsp de F 3 x displaystyle F xi x nbsp funkciya rozpodilu vipadkovoyi velichini 3 displaystyle xi nbsp Vid ciyeyi zalezhnosti prihodimo do takoyi formuli E 3 X x d F 3 x displaystyle operatorname E xi int X xdF xi x nbsp Osnovni vlastivosti matematichnogo spodivannya RedaguvatiYaksho 3 displaystyle displaystyle xi nbsp ta h displaystyle displaystyle eta nbsp nezalezhni integrovni vipadkovi velichini to E 3 h E 3 E h displaystyle displaystyle operatorname E xi cdot eta operatorname E xi cdot operatorname E eta nbsp Yaksho 3 displaystyle displaystyle xi nbsp ta h displaystyle displaystyle eta nbsp integrovni vipadkovi velichini to E 3 h E 3 E h displaystyle displaystyle operatorname E xi eta operatorname E xi operatorname E eta nbsp Yaksho 3 displaystyle displaystyle xi nbsp integrovna vipadkova velichina C R displaystyle C in mathbb R nbsp to E C 3 C E 3 displaystyle operatorname E C xi C cdot operatorname E xi nbsp Nizhchenavedeni vlastivosti povtoryuyut vlastivosti integrala Lebega abo bezposeredno viplivayut iz nih E 1 A P A displaystyle operatorname E mathbf 1 A operatorname P A nbsp Redaguvati Yaksho A displaystyle A nbsp ye vipadkovoyu podiyeyu todi E 1 A P A displaystyle operatorname E mathbf 1 A operatorname P A nbsp de 1 A displaystyle mathbf 1 A nbsp ce indikatorna funkciya dlya mnozhini A displaystyle A nbsp Dovedennya Za viznachennyam integrala Lebega dlya prostoyi funkciyi 1 A 1 A w displaystyle mathbf 1 A mathbf 1 A omega nbsp E 1 A 1 P A 0 P W A P A displaystyle operatorname E mathbf 1 A 1 cdot operatorname P A 0 cdot operatorname P Omega setminus A operatorname P A nbsp Yaksho X Y todi E X E Y Redaguvati Ce tverdzhennya viplivaye iz viznachennya integrala Lebega yaksho vzyati do uvagi sho X Y displaystyle X Y nbsp X Y displaystyle X Y nbsp i sho zamina prostoyi vipadkovoyi velichini na mnozhinu iz nulovoyu imovirnistyu ne zminyuye matematichnogo spodivannya Matematichne spodivannya dlya staloyi Redaguvati Yaksho X displaystyle X nbsp ce vipadkova velichina i X c displaystyle X c nbsp de c displaystyle c in infty infty nbsp todi E X c displaystyle operatorname E X c nbsp Zokrema dlya dovilnoyi vipadkovoyi velichini X displaystyle X nbsp E E X E X displaystyle operatorname E operatorname E X operatorname E X nbsp Dovedennya Nehaj C displaystyle C nbsp ce stala vipadkova velichina tobto C c displaystyle C equiv c nbsp Z viznachennya integrala Lebega viplivaye sho E C c displaystyle operatorname E C c nbsp Takozh viplivaye sho X C displaystyle X C nbsp Iz poperednoyi vlastivosti E X E C c displaystyle operatorname E X operatorname E C c nbsp Linijnist Redaguvati Operator matematichnogo spodivannya E displaystyle operatorname E cdot nbsp ye linijnim v tomu sensi sho E X Y E X E Y E a X a E X displaystyle begin aligned operatorname E X Y amp operatorname E X operatorname E Y 6pt operatorname E aX amp a operatorname E X end aligned nbsp de X displaystyle X nbsp i Y displaystyle Y nbsp ye dovilnimi vipadkovimi velichinami i a displaystyle a nbsp ye skalyarom Bilsh suvoro nehaj X displaystyle X nbsp i Y displaystyle Y nbsp vipadkovi velichini yaki mayut viznacheni matematichni spodivannya sho vidminni vid displaystyle infty infty nbsp Yaksho E X E Y displaystyle operatorname E X operatorname E Y nbsp takozh viznachene tobto vidminne vid displaystyle infty infty nbsp todiE X Y E X E Y displaystyle operatorname E X Y operatorname E X operatorname E Y nbsp nehaj E X displaystyle operatorname E X nbsp ye skinchennim a a R displaystyle a in mathbb R nbsp ye skinchennim skalyarom Todi E a X a E X displaystyle operatorname E aX a operatorname E X nbsp Dovedennya 1 Dovedemo aditivnist za dopomogoyu dekilkoh krokiv 1a Yaksho X displaystyle X nbsp i Y displaystyle Y nbsp ye prostimi i nevid yemnimi znahodyachi peretini de ce neobhidno perepishemo X displaystyle X nbsp i Y displaystyle Y nbsp u nastupnomu viglyadi X i 1 n x i 1 A i displaystyle X sum i 1 n x i cdot mathbf 1 A i nbsp i Y i 1 n y i 1 A i displaystyle Y sum i 1 n y i cdot mathbf 1 A i nbsp dlya deyakih vimirnih poparno neperesichnih mnozhin A i i 1 n displaystyle A i i 1 n nbsp rozbittya W displaystyle Omega nbsp i 1 A i 1 A i w displaystyle mathbf 1 A i mathbf 1 A i omega nbsp bude indikatornoyu funkciyeyu dlya mnozhini A i displaystyle A i nbsp Aditivnist viplivaye iz perevirki pryamim metodom 1b Pripustimo sho X displaystyle X nbsp i Y displaystyle Y nbsp ye dovilnimi ne vid yemnimi velichinami Zauvazhimo sho kozhna ne vid yemna vimirna funkciya ye potochkovoyu graniceyu dlya potochkovoyi ne spadnoyi poslidovnosti iz prostih ne vid yemnih funkcij Nehaj X n displaystyle X n nbsp i Y n displaystyle Y n nbsp ye takimi poslidovnostyami yaki zbigayutsya do X displaystyle X nbsp i Y displaystyle Y nbsp vidpovidno Mi bachimo sho X n Y n displaystyle X n Y n nbsp potochkovo ne spadaye i X n Y n X Y displaystyle X n Y n to X Y nbsp potochkovo Vidpovidno do Teoremi Levi pro monotonnu zbizhnist i vipadku 1a E X Y E lim n X n Y n lim n E X n Y n lim n E X n E Y n lim n E X n lim n E Y n E lim n X n E lim n Y n E X E Y displaystyle begin aligned operatorname E X Y amp operatorname E lim n X n Y n amp lim n operatorname E X n Y n amp lim n operatorname E X n operatorname E Y n amp lim n operatorname E X n lim n operatorname E Y n amp operatorname E lim n X n operatorname E lim n Y n amp operatorname E X operatorname E Y end aligned nbsp Za dopomogoyu teoremi pro monotonnu zbizhnist mozhna pereviriti sho ce ne vede do krugovoyi logiki 1c V zagalnomu vipadku yaksho Z X Y displaystyle Z X Y nbsp todi Z X Y Z X Y displaystyle Z X Y Z X Y nbsp and E Z X Y E Z X Y displaystyle operatorname E Z X Y operatorname E Z X Y nbsp Rozdilivshi ce E Z E X E Y E Z E X E Y displaystyle operatorname E Z operatorname E X operatorname E Y operatorname E Z operatorname E X operatorname E Y nbsp sho ekvivalentno E Z E Z E X E Y E X E Y displaystyle operatorname E Z operatorname E Z operatorname E X operatorname E Y operatorname E X operatorname E Y nbsp i zreshtoyu E Z E X E Y displaystyle operatorname E Z operatorname E X operatorname E Y nbsp 2 Dlya dovedennya odnoridnosti pripustimo spershu sho skalyar a displaystyle a nbsp opisanij pered cim ne vid yemnij Skinchennist E X displaystyle operatorname E X nbsp peredbachaye sho X displaystyle X nbsp takozh ye skinchennim Tomu a X displaystyle a cdot X nbsp takozh skinchenne sho zreshtoyu garantuye sho E a X displaystyle operatorname E aX nbsp ye skinchennim Rivnyannya takim chinom ye prostoyu perevirkoyu sho osnovana na viznachenni integrala Lebega Yaksho a lt 0 displaystyle a lt 0 nbsp todi spershu dovedemo sho E X E X displaystyle operatorname E X operatorname E X nbsp sposterigayuchi sho X X displaystyle X X nbsp i navpaki E X isnuye i ye skinchennim todi i tilki todi koli E X ye skinchennim Redaguvati Taki tverdzhennya vidnosno vipadkovoyi velichini X displaystyle X nbsp ekvivalentni E X displaystyle operatorname E X nbsp isnuye i ye skinchennim Obidva E X displaystyle operatorname E X nbsp i E X displaystyle operatorname E X nbsp ye skinchennimi E X displaystyle operatorname E X nbsp skinchenne Naspravdi X X X displaystyle X X X nbsp Vidpovidno do vlastivosti linijnosti E X E X E X displaystyle operatorname E X operatorname E X operatorname E X nbsp Vishenavedena rivnist spirayetsya na viznachennya integralu Lebega i vimirnist X displaystyle X nbsp Zavdyaki comu virazi pro te sho X displaystyle X nbsp ye integrovanoyu i matematichne spodivannya X displaystyle X nbsp ye skinchennim ye zreshtoyu vzayemozaminnimi yaksho govoryat pro vipadkovu velichinu Yaksho X 0 todi E X 0 Redaguvati Dovedennya Poznachimo SF s W R s ye prostoyu vipadkovoyu velichinoyu i 0 s X displaystyle operatorname SF s Omega to mathbb R mid s text ye prostoyu vipadkovoyu velichinoyu i 0 leq s leq X nbsp Yaksho s SF displaystyle s in operatorname SF nbsp todi E s 0 displaystyle operatorname E s in 0 infty nbsp i zvidsi za viznachennyam integrala Lebega E X sup s SF E s 0 displaystyle operatorname E X sup s in operatorname SF operatorname E s geq 0 nbsp Z inshogo boku X 0 displaystyle X 0 nbsp majzhe skriz tozh yaksho zadati cherez podibnij argument E X 0 displaystyle operatorname E X 0 nbsp i takim chinom E X E X E X E X 0 displaystyle operatorname E X operatorname E X operatorname E X operatorname E X geq 0 nbsp Monotonnist Redaguvati Yaksho X Y displaystyle X leq Y nbsp a s i obidva E X displaystyle operatorname E X nbsp ta E Y displaystyle operatorname E Y nbsp isnuyut todi E X E Y displaystyle operatorname E X leq operatorname E Y nbsp Zauvazhennya E X displaystyle operatorname E X nbsp and E Y displaystyle operatorname E Y nbsp isnuyu v tomu rozuminni sho min E X E X lt displaystyle min operatorname E X operatorname E X lt infty nbsp and min E Y E Y lt displaystyle min operatorname E Y operatorname E Y lt infty nbsp Dovedennya viplivaye iz vlastivosti linijnosti i poperednoyi vlastivosti yaksho zadati Z Y X displaystyle Z Y X nbsp i zvernuti uvagu na te sho Z 0 displaystyle Z geq 0 nbsp majzhe skriz Yaksho X Y displaystyle X leq Y nbsp majzhe skriz i E Y displaystyle operatorname E Y nbsp ye skinchennoyu todi tak samo i dlya E X displaystyle operatorname E X nbsp Redaguvati Nehaj X displaystyle X nbsp i Y displaystyle Y nbsp ye vipadkovimi velichinami takimi sho X Y displaystyle X leq Y nbsp majzhe skriz i E Y lt displaystyle operatorname E Y lt infty nbsp Todi E X displaystyle operatorname E X neq pm infty nbsp Dovedennya Zavdyaki ne vid yemnosti X displaystyle X nbsp E X displaystyle operatorname E X nbsp isnuye skinchenne abo neskinchenne Vidpovidno do vlastivosti monotonnosti E X E Y lt displaystyle operatorname E X leq operatorname E Y lt infty nbsp tozh E X displaystyle operatorname E X nbsp ye skinchennim sho v svoyu chergu yak mi bachili bude ekvivalentne tomu sho E X displaystyle operatorname E X nbsp ye skinchennim Yaksho E X b lt displaystyle operatorname E X beta lt infty nbsp ta 0 lt a lt b displaystyle 0 lt alpha lt beta nbsp todi E X a lt displaystyle operatorname E X alpha lt infty nbsp Redaguvati Nizhchenavedene tverdzhennya bude vikoristane dlya dovedennya vlastivosti ekstremalnosti dlya E X displaystyle operatorname E X nbsp Tverdzhennya Yaksho X displaystyle X nbsp ye vipadkovoyu velichinoyu todi tak samo bude i X a displaystyle X alpha nbsp dlya bud yakogo a gt 0 displaystyle alpha gt 0 nbsp Yaksho v dodatok do togo E X b lt displaystyle operatorname E X beta lt infty nbsp i 0 lt a lt b displaystyle 0 lt alpha lt beta nbsp todi E X a lt displaystyle operatorname E X alpha lt infty nbsp Dovedennya Abi zrozumiti chomu pershe tverdzhennya ye spravedlivim zauvazhimo sho X a displaystyle X alpha nbsp ye kompoziciyeyu iz X displaystyle X nbsp ta x x a displaystyle x mapsto x alpha nbsp Oskilki ce bude kompoziciyeyu dvoh vimirnih funkcij to X a displaystyle X alpha nbsp takozh ye vimirnoyu Abi dovesti druge tverdzhennya viznachimo Y w max X w b 1 displaystyle Y omega max X omega beta 1 nbsp Mozhna pereviriti sho Y displaystyle Y nbsp ye vipadkovoyu velichinoyu i X a Y displaystyle X alpha leq Y nbsp Vidpovidno do vlastivosti nevid yemnosti E Y w X w b 1 Y d P w X w b gt 1 Y d P P X w b 1 w X w b gt 1 X b d P 1 E X b lt displaystyle begin aligned operatorname E Y amp int limits omega mid X omega beta leq 1 Y dP int limits omega mid X omega beta gt 1 Y dP 6pt amp operatorname P bigl X omega beta leq 1 bigr int limits omega mid X omega beta gt 1 X beta dP 6pt amp leq 1 operatorname E X beta lt infty end aligned nbsp Vidpovidno do vlastivosti monotonnosti E X a E Y 1 E X b lt displaystyle operatorname E X alpha leq operatorname E Y leq 1 operatorname E X beta lt infty nbsp Protilezhnij priklad dlya neskinchennoyi miri Redaguvati Vimoga sho P W lt displaystyle operatorname P Omega lt infty nbsp ye suttyevoyu Yak protilezhnij priklad rozglyanemo vimirnij prostir 1 B R 1 l displaystyle 1 infty mathcal B mathbb R 1 infty lambda nbsp de B R 1 displaystyle mathcal B mathbb R 1 infty nbsp ce Borelivska s displaystyle sigma nbsp algebra nad intervalom 1 displaystyle 1 infty nbsp i l displaystyle lambda nbsp ye linijnoyu miroyu Lebega Mozhna dovesti sho 1 1 x d x displaystyle textstyle int 1 infty frac 1 x dx infty nbsp navit yaksho 1 1 x 2 d x 1 displaystyle textstyle int 1 infty frac 1 x 2 dx 1 nbsp S 1 x d x displaystyle textstyle int S frac 1 x dx nbsp i S 1 x 2 d x displaystyle textstyle int S frac 1 x 2 dx nbsp viznachayut miru m displaystyle mu nbsp nad 1 n 1 1 n displaystyle textstyle 1 infty cup n 1 infty 1 n nbsp Zvazhayuchi na neperervnist dlya m displaystyle mu nbsp i sprostivshi integral Rimana dlya kozhnogo skinchennogo intervala 1 n displaystyle 1 n nbsp otrimayemo neobhidne dovedennya Vlastivist ekstremalnosti Redaguvati Vidpovidno do togo sho bulo dovedeno vishe yaksho X displaystyle X nbsp ce vipadkova zminna todi tak samo i X 2 displaystyle X 2 nbsp Tverdzhennya vlastivist ekstremalnosti dlya E X displaystyle operatorname E X nbsp Nehaj X displaystyle X nbsp ye vipadkovoyu velichinoyu i E X 2 lt displaystyle operatorname E X 2 lt infty nbsp Todi E X displaystyle operatorname E X nbsp i Var X displaystyle operatorname Var X nbsp ye skinchennimi a E X displaystyle operatorname E X nbsp najkrasha aproksimaciya metodom najmenshih kvadrativ dlya X displaystyle X nbsp sered stalih Zokrema dlya kozhnogo c R displaystyle c in mathbb R nbsp E X c 2 Var X displaystyle textstyle operatorname E X c 2 geq operatorname Var X nbsp rivnyannya bude dijsnim todi i tilki todi koli c E X displaystyle c operatorname E X nbsp Var X displaystyle operatorname Var X nbsp poznachaye dispersiyu velichini X displaystyle X nbsp Poyasnennya intuyitivno zrozumila interpretaciya vlastivosti ekstremalnosti U prostomu rozuminni vlastivist ekstremalnosti stverdzhuye sho yaksho isnuye zadacha peredbachennya rezultatu en viprobuvannya dlya vipadkovoyi velichini X displaystyle X nbsp todi E X displaystyle operatorname E X nbsp v deyakomu praktichnomu sensi ye najkrashim zakladom peredbachennya yaksho nemaye poperednoyi informaciyi pro rezultat Z inshogo boku yaksho v rezultati otrimanogo rezultatu isnuye deyake utochnene znannya F displaystyle mathcal F nbsp todi znov v deyakomu praktichnomu sensi peredbachennya mozhna pokrashiti vikoristovuyuchi umovni matematichni spodivannya E X F displaystyle operatorname E X mid mathcal F nbsp sered yakih E X displaystyle operatorname E X nbsp ye osoblivim vipadkom zamist E X displaystyle operatorname E X nbsp Dovedennya tverdzhennya Vidpovidno do poperednih vlastivostej E X displaystyle operatorname E X nbsp i Var X E X 2 E 2 X displaystyle operatorname Var X operatorname E X 2 operatorname E 2 X nbsp obidva ye skinchennimi i E X c 2 E X 2 2 c X c 2 E X 2 2 c E X c 2 c E X 2 E X 2 E 2 X c E X 2 Var X displaystyle begin aligned operatorname E X c 2 amp operatorname E X 2 2cX c 2 6pt amp operatorname E X 2 2c operatorname E X c 2 6pt amp c operatorname E X 2 operatorname E X 2 operatorname E 2 X 6pt amp c operatorname E X 2 operatorname Var X end aligned nbsp zvidki viplivaye vlastivist ekstremalnosti Nevirodzhenist Redaguvati Yaksho E X 0 displaystyle operatorname E X 0 nbsp todi X 0 displaystyle X 0 nbsp majzhe pevno Dovedennya Dlya bud yakoyi dodatnoyi staloyi r R gt 0 displaystyle r in mathbb R gt 0 nbsp P X r 0 displaystyle operatorname P X geq r 0 nbsp Naspravdi r 1 X r X 1 X r X displaystyle r cdot mathbf 1 X geq r leq X cdot mathbf 1 X geq r leq X nbsp de 1 X r 1 X r w displaystyle mathbf 1 X geq r mathbf 1 X geq r omega nbsp ce indikatorna funkciya dlya mnozhini w W X w r displaystyle omega in Omega mid X omega geq r nbsp Vidpovidno do vishenavedenoyi vlastivosti skinchennist E X displaystyle operatorname E X nbsp garantuye sho matematichni spodivannya E r 1 X r displaystyle operatorname E r cdot mathbf 1 X geq r nbsp i E X 1 X r displaystyle operatorname E X cdot mathbf 1 X geq r nbsp takozh ye skinchennimi Vidpovidno do vlastivosti monotonnosti r P X r E r 1 X r E X 1 X r E X 0 displaystyle r cdot operatorname P X geq r operatorname E r cdot mathbf 1 X geq r leq operatorname E X cdot mathbf 1 X geq r leq operatorname E X 0 nbsp Dlya deyakogo cilogo chisla n gt 0 displaystyle n gt 0 nbsp zadamo r 1 n displaystyle textstyle r frac 1 n nbsp Viznachimo S n w W X w 1 n displaystyle textstyle S n omega in Omega mid X omega geq frac 1 n nbsp i S w W X w gt 0 displaystyle textstyle S omega in Omega mid X omega gt 0 nbsp Poslidovnist mnozhin S 1 S n S n 1 S displaystyle S 1 subseteq cdots subseteq S n subseteq S n 1 subseteq cdots subseteq S nbsp monotonno ne spadaye i S n 1 S n displaystyle S cup n 1 infty S n nbsp Vidpovidno do neperervnosti znizu P S lim n P S n displaystyle textstyle operatorname P S lim n operatorname P S n nbsp Zastosuvavshi cyu formulu otrimayemo P X 0 P X gt 0 lim n P X 1 n lim n 0 0 displaystyle operatorname P X neq 0 operatorname P X gt 0 lim n operatorname P left X geq frac 1 n right lim n 0 0 nbsp sho i treba bulo dovesti Yaksho E X lt displaystyle operatorname E X lt infty nbsp todi X lt displaystyle X lt infty nbsp majzhe pevno Redaguvati Dovedennya Oskilki E X displaystyle operatorname E X nbsp ye viznachenim tobto min E X E X lt displaystyle min operatorname E X operatorname E X lt infty nbsp i E X E X E X displaystyle operatorname E X operatorname E X operatorname E X nbsp nam vidomo sho E X displaystyle operatorname E X nbsp ye skinchennim i mi hochemo pokazati sho X lt displaystyle X lt infty nbsp majzhe pevno Pokazhemo sho P W 0 displaystyle operatorname P Omega infty 0 nbsp de W w W X w displaystyle Omega infty omega in Omega mid X omega infty nbsp Yaksho W displaystyle Omega infty emptyset nbsp todi P W 0 displaystyle operatorname P Omega infty 0 nbsp i dokaz zavershenij Pripustivshi sho W displaystyle Omega infty neq emptyset nbsp viznachimo SF s s ye prostoyu vipadkovoyu velichinoyu 0 s X displaystyle operatorname SF s mid s hbox ye prostoyu vipadkovoyu velichinoyu 0 leq s leq X nbsp Dano sho S F displaystyle rm SF neq emptyset nbsp oberemo f S F displaystyle f in rm SF nbsp Dlya kozhnogo n gt sup W f displaystyle textstyle n gt sup Omega f nbsp viznachimo f n w n if w W f w if w W displaystyle f n omega begin cases n amp hbox if omega in Omega infty 3pt f omega amp hbox if omega notin Omega infty end cases nbsp Ochevidno f n S F displaystyle f n in rm SF nbsp i E f n n P W h displaystyle operatorname E f n n cdot operatorname P Omega infty h nbsp dlya deyakoyi staloyi h 0 displaystyle h geq 0 nbsp nezalezhnoyi vid n displaystyle n nbsp Mozhna legko pomititi sho naspravdi h E f 1 W W displaystyle h operatorname E f cdot mathbf 1 Omega setminus Omega infty nbsp ale v danomu vipadku ce nas ne cikavit Pripustimo sho P W gt 0 displaystyle operatorname P Omega infty gt 0 nbsp Poslidovnist E f n displaystyle operatorname E f n nbsp strogo zrostaye tomu za viznachennyam integrala Lebega E X sup s S F E s sup n gt sup W f E f n P W h displaystyle operatorname E X sup s in rm SF operatorname E s geq sup n gt sup Omega f operatorname E f n infty cdot operatorname P Omega infty h infty nbsp sho superechit poperednomu visnovku pro te sho E X displaystyle operatorname E X nbsp ye skinchennim Naslidok yaksho E X gt displaystyle operatorname E X gt infty nbsp todi X gt displaystyle X gt infty nbsp majzhe pevno Redaguvati Naslidok yaksho E X lt displaystyle operatorname E X lt infty nbsp todi X displaystyle X neq pm infty nbsp majzhe pevno Redaguvati E X E X displaystyle operatorname E X leq operatorname E X nbsp Redaguvati Dlya dovilnoyi vipadkovoyi velichini bude virnoyu vlastivist X displaystyle X nbsp E X E X displaystyle operatorname E X leq operatorname E X nbsp Dovedennya Vidpovidno do viznachennya integrala Lebega E X E X E X E X E X E X E X E X X E X displaystyle begin aligned operatorname E X amp Bigl operatorname E X operatorname E X Bigr leq Bigl operatorname E X Bigr Bigl operatorname E X Bigr 5pt amp operatorname E X operatorname E X operatorname E X X 5pt amp operatorname E X end aligned nbsp Vidmitimo sho cej samij rezultat mozhna dovesti za dopomogoyu nerivnosti Yensena Nemultiplikativnist Redaguvati U zagalnomu vipadku operator matematichnogo spodivannya ne ye multiplikativnim tobto E X Y displaystyle operatorname E XY nbsp ne obov yazkovo dorivnyuvatime E X E Y displaystyle operatorname E X cdot operatorname E Y nbsp Naspravdi nehaj X displaystyle X nbsp prijmaye znachennya 1 ta 1 iz imovirnistyu 0 5 kozhne Todi E 2 X 1 2 1 1 2 1 2 0 displaystyle operatorname E 2 X left frac 1 2 cdot 1 frac 1 2 cdot 1 right 2 0 nbsp i E X 2 1 2 1 2 1 2 1 2 1 tozh E X 2 E 2 X displaystyle operatorname E X 2 frac 1 2 cdot 1 2 frac 1 2 cdot 1 2 1 text tozh operatorname E X 2 neq operatorname E 2 X nbsp Velichina na yaku vidriznyayetsya multiplikativnist nazivayetsya kovariaciyeyu Cov X Y E X Y E X E Y displaystyle operatorname Cov X Y operatorname E XY operatorname E X operatorname E Y nbsp Odnak yaksho vipadkovi velichini X W 1 F 1 P 1 displaystyle X in Omega 1 mathcal F 1 operatorname P 1 nbsp i Y W 2 F 2 P 2 displaystyle Y in Omega 2 mathcal F 2 operatorname P 2 nbsp ye nezalezhnimi todi E X Y E X E Y displaystyle operatorname E XY operatorname E X operatorname E Y nbsp ta Cov X Y 0 displaystyle operatorname Cov X Y 0 nbsp Protilezhnij priklad E X i E X displaystyle operatorname E X i not to operatorname E X nbsp nezvazhayuchi na ce X i X displaystyle X i to X nbsp potochkovo Redaguvati Nehaj 0 1 B 0 1 P displaystyle left 0 1 mathcal B 0 1 mathrm P right nbsp zadaye jmovirnisnij prostir de B 0 1 displaystyle mathcal B 0 1 nbsp ye Borelivskoyu s displaystyle sigma nbsp algebroyu nad 0 1 displaystyle 0 1 nbsp i P displaystyle mathrm P nbsp ye linijnoyu miroyu Lebega Dlya i 1 displaystyle i geq 1 nbsp viznachimo poslidovnist vipadkovih velichin X i i 1 0 1 i displaystyle X i i cdot mathbf 1 left 0 frac 1 i right nbsp i vipadkovu velichinu X yaksho x 0 0 v inshih vipadkah displaystyle X begin cases infty amp text yaksho x 0 0 amp text v inshih vipadkah end cases nbsp v intervali 0 1 displaystyle 0 1 nbsp i de 1 S displaystyle mathbf 1 S nbsp ye indikatornoyu funkciyeyu nad mnozhinoyu S 0 1 displaystyle S subseteq 0 1 nbsp Dlya kozhnogo x 0 1 displaystyle x in 0 1 nbsp pri tomu yak i displaystyle i to infty nbsp X i x X x displaystyle X i x to X x nbsp i E X i i P 0 1 i i 1 i 1 displaystyle operatorname E X i i cdot mathrm P left left 0 frac 1 i right right i cdot dfrac 1 i 1 nbsp tozh lim i E X i 1 displaystyle lim i to infty operatorname E X i 1 nbsp Z inshogo boku P 0 0 displaystyle mathop mathrm P 0 0 nbsp i takim chinom E X 0 displaystyle operatorname E left X right 0 nbsp Zlichenna neaditivnist Redaguvati U zagalnomu vipadku operator matematichnogo spodivannya ne s displaystyle sigma nbsp aditivnij tobto E i 0 X i i 0 E X i displaystyle operatorname E left sum i 0 infty X i right neq sum i 0 infty operatorname E X i nbsp Rozglyanemo obernenij priklad nehaj 0 1 B 0 1 P displaystyle left 0 1 mathcal B 0 1 mathrm P right nbsp ye jmovirnisnim prostorom de B 0 1 displaystyle mathcal B 0 1 nbsp ce Borelivska s displaystyle sigma nbsp algebra u intervali 0 1 displaystyle 0 1 nbsp i