www.wikidata.uk-ua.nina.az
Di vnij atra ktor Lo renca atraktor sho demonstruye haotichnu povedinku i ye rozv yazkom sistemi troh nelinijnih diferencialnih rivnyan vpershe zapisanih 1 v 1963 roci Edvardom Lorencom pri rozglyadi konvekcijnogo ruhu v odnoridnomu shari ridini sho pidigrivayetsya znizu Rivnyannya Lorenca takozh opisuyut konvekciyu v kilcevij trubci 2 ta povedinku odnomodovogo lazera Nalezhit do klasu tak zvanih divnih atraktoriv Varto zaznachiti termini haos ta divnij atraktor ne vzhivalisya v originalnij roboti Lorenca voni z vilisya v naukovij literaturi desho piznishe natomist jshlosya pro aperiodichni ruhi Dvi krivi pokazuyut trayektoriyi evolyuciyi divnogo atraktora Lorenca pri duzhe blizkih pochatkovih umovah Kincevi tochki znachno vidriznyayutsya Divnij atraktor Lorenca pri l 28 s 10 b 8 3 displaystyle lambda 28 sigma 10 b 8 3 Zmist 1 Rivnyannya 2 Stacionarni tochki 3 Trayektoriyi 4 Programi yaki modelyuyut povedinku sistemi rivnyan Lorenca 5 Posilannya v teksti 6 DzherelaRivnyannya RedaguvatiPochatkovoyu sistemoyu yaka v kincevomu rezultati prizvodit do atraktora Lorenca ye odnoridnij shar ridini visotoyu H ta z fiksovanoyu rizniceyu temperatur DT mizh verhnim ta nizhnim rivnyami Yaksho pripustiti sho vsi ruhi ridini paralelni ploshini XZ ta ne vidbuvayetsya zmin v napryamku osi Y to zapisavshi rivnyannya Nav ye Stoksa rivnyannya neperervnosti ridini rivnyannya teploprovidnosti ta skoristavshis nablizhennyam Busineska mozhna otrimati rivnyannya ruhu ridini u nastupnij formi t 2 ps ps z 2 ps x ps x 2 ps z n 2 2 ps g a T x displaystyle frac partial partial t nabla 2 psi frac partial psi partial z frac partial nabla 2 psi partial x frac partial psi partial x frac partial nabla 2 psi partial z nu nabla 2 nabla 2 psi g alpha frac partial T partial x nbsp T t T z ps x T x ps z k 2 T D T H ps x displaystyle frac partial T partial t frac partial T partial z frac partial psi partial x frac partial T partial x frac partial psi partial z kappa nabla 2 T frac Delta T H frac partial psi partial x nbsp de ps displaystyle psi nbsp funkciya potoku ridini v x z ps displaystyle v x partial z psi nbsp v z x ps displaystyle v z partial x psi nbsp v v x v z displaystyle vec v v x v z nbsp pole shvidkostej T displaystyle T nbsp vidhilennya temperaturi ridini vid yiyi kritichnogo znachennya pri yakomu znikaye konvekciya Parametri g a n k displaystyle g alpha nu kappa nbsp poznachayut vidpovidno priskorennya vilnogo padinnya koeficiyent teplovogo rozshirennya kinematichnu v yazkist ridini ta yiyi teploprovidnist Yak bulo vstanovleno Releyem v takij sistemi mozhut utvoryuvatisya konvekcijni vali izotropni v napryamku osi OY v yakih vidbuvayetsya kolovorot ridini teplisha ridina pidnimayetsya nagoru a holodnisha opuskayetsya donizu Konvekcijni vali dilyat ploshinu XZ na priblizno odnakovi komirki Zgidno z ideyami Releya 3 ta Zalcmana 4 mozhna rozklasti polya ps x z t displaystyle psi x z t nbsp ta T x z t displaystyle T x z t nbsp v ryad Fur ye po x displaystyle x nbsp ta z displaystyle z nbsp i obmezhitis lishe pershimi chlenami rozkladu a k 1 a 2 ps x z t 2 X sin p a x H sin p z H displaystyle frac a kappa 1 a 2 psi x z t sqrt 2 X sin left frac pi ax H right sin left frac pi z H right nbsp p R a D T R c T x z t 2 Y cos p a x H sin p z H Z sin 2 p z H displaystyle frac pi R a Delta TR c T x z t sqrt 2 Y cos left frac pi ax H right sin left frac pi z H right Z sin left frac 2 pi z H right nbsp de R a g a H 3 D T n k displaystyle R a g alpha H 3 Delta T nu kappa nbsp chislo Releya R c p 4 1 a 2 3 a 2 displaystyle R c pi 4 1 a 2 3 a 2 nbsp parametr a displaystyle a nbsp zadaye spivvidnoshennya vertikalnogo ta gorizontalnogo rozmiriv komirok sho utvoryuyutsya v rezultati konkvekciyi a zminni X Y Z displaystyle X Y Z nbsp zalezhat lishe vid chasu Pislya perehodu do bezrozmirnogo chasu shlyahom zamini t t p 2 1 a 2 k H 2 displaystyle t to t cdot pi 2 1 a 2 kappa H 2 nbsp otrimuyetsya sistema troh zvichajnih diferencialnih rivnyan sho nosit nazvu rivnyan Lorenca X s X s Y displaystyle dot X sigma X sigma Y nbsp Y X Z l X Y displaystyle dot Y XZ lambda X Y nbsp Z X Y b Z displaystyle dot Z XY bZ nbsp de tochka oznachaye diferenciyuvannya za chasom s n k displaystyle sigma nu kappa nbsp chislo Prandtlya l R a R c displaystyle lambda R a R c nbsp ta b 4 1 a 2 displaystyle b 4 1 a 2 nbsp Dinamichni zminni X t displaystyle X t nbsp Y t displaystyle Y t nbsp ta Z t displaystyle Z t nbsp opisuyut vidpovidno intensivnist konvektivnogo ruhu riznicyu temperatur vishidnogo ta nizhidnogo potokiv ridini ta vidhilennya vertikalnogo rozpodilu temperaturi vid linijnogo rezhimu Stacionarni tochki RedaguvatiAnaliz vlastivostej stacionarnih tochok sistemi zruchno robiti zminyuyuchi parametr l displaystyle lambda nbsp 0 lt l lt 1 displaystyle 0 lt lambda lt 1 nbsp stacionarna tochka 0 0 0 displaystyle 0 0 0 nbsp vidpovidaye stanu vidsutnosti konvekciyi pri 0 lt l lt 1 displaystyle 0 lt lambda lt 1 nbsp vona ye stijkoyu stijkij vuzol pri l gt 1 displaystyle lambda gt 1 nbsp staye nestijkoyu sidlo vuzlom 1 lt l lt l 1 displaystyle 1 lt lambda lt lambda 1 nbsp v moment vtrati stijkosti tochki 0 0 0 displaystyle 0 0 0 nbsp z yavlyayutsya dvi inshi stijki stacionarni tochki fokusi b l 1 b l 1 l 1 displaystyle sqrt b lambda 1 sqrt b lambda 1 lambda 1 nbsp ta b l 1 b l 1 l 1 displaystyle sqrt b lambda 1 sqrt b lambda 1 lambda 1 nbsp yaki vidpovidayut rezhimu staloyi konvekciyi Fazovi krivi pryamuyut do cih stacionarnih tochok po spiralyah Chim bilshim ye parametr l displaystyle lambda nbsp tim bilshij rozmah mayut ci spirali pri pidhodi do stacionarnih tochok l 1 lt l lt l 2 displaystyle lambda 1 lt lambda lt lambda 2 nbsp ce kritichne znachennya l 1 displaystyle lambda 1 nbsp mozhna vstanoviti lishe chiselno zokrema dlya s 10 b 8 3 displaystyle sigma 10 b 8 3 nbsp vono dorivnyuye l 1 13 926 displaystyle lambda 1 simeq 13 926 nbsp Pri l l 1 displaystyle lambda lambda 1 nbsp trayektoriya pochavshi ruh z pochatku koordinat 0 0 0 displaystyle 0 0 0 nbsp znovu prihodit v nogo Takim chinom vidbuvayetsya nelokalna bifurkaciya Pri l gt l 1 displaystyle lambda gt lambda 1 nbsp navkolo stacionarnih tochok z yavlyayutsya dva nestijkih granichnih cikli Utvoryuyetsya invariantna mnozhina tochok sho vidpovidaye haotichnomu blukannyu trayektorij sho postijno vidshtovhuyutsya vid granichnih cikliv Prote cya mnozhina ne ye prityaguyuchoyu tomu govoryat pro divnij repeler l 2 lt l lt s s b 3 s b 1 displaystyle lambda 2 lt lambda lt frac sigma sigma b 3 sigma b 1 nbsp znachennya l 2 displaystyle lambda 2 nbsp pri s 10 b 8 3 displaystyle sigma 10 b 8 3 nbsp vono dorivnyuye l 2 24 06 displaystyle lambda 2 simeq 24 06 nbsp signalizuye pro peretvorennya divnogo repelera v divnij atraktor inodi govoryat pro t zv nestandartnij atraktor Lorenca yakij spivisnuye z dvoma inshimi atraktorami stijkimi fokusami l gt s s b 3 s b 1 displaystyle lambda gt frac sigma sigma b 3 sigma b 1 nbsp pri dosyagnenni cogo kritichnogo znachennya nestijki granichni cikli styaguyutsya v stacionarni tochki i stacionarni tochki vtrachayut svoyu stijkist utvoryuyetsya t zv standartnij atraktor Lorenca sho staye yedinim atraktorom sistemi Trayektoriyi RedaguvatiFazovi trayektoriyi sho pochinayutsya v bud yakij tochci spochatku zdavalosya b prityagayutsya do odniyeyi z stacionarnih tochok ale ne mozhut pidijti nadto blizko oskilki stacionarna tochka nestijka V yakijs moment fazova trayektoriya perestribuye v okil inshoyi stacionarnoyi tochki ale tam tezh ne mozhe zatrimatisya j znovu perestribuye do pershoyi stacionarnoyi tochki Yak naslidok sistema bezupinno aperiodichno perestribuye vid odniyeyi tochki do inshoyi Fazovi trayektoriyi chutlivi do shonajmenshoyi zmini pochatkovih umov Dvi neskinchenno blizki pochatkovi tochki v fazovomu prostori z chasom rozhodyatsya Efekt metelikaMoment chasu t 1 Moment chasu t 2 Moment chasu t 3 nbsp nbsp nbsp Risunki zobrazhayut povedinku dvoh trayektorij rivnyan Lorencca pri parametrah l 28 s 10 b 8 3 displaystyle lambda 28 sigma 10 b 8 3 nbsp yaki v pochatkovij moment buli vidokremleni odna vid odnoyi po zminnij X displaystyle X nbsp na velichinu 10 5 V pochatkovij moment chasu skladayetsya vrazhennya sho trayektoriyi zbigayutsya prote cherez deyakij chas staye ochevidnim sho sinya ta zhovta trayektoriyi suttyevo rozbigayutsya Java animaciya atraktora Lorenca Arhivovano 11 bereznya 2008 u Portugese Web Archive V 1983 roci Grassberger ta Prokachchiya ocinili 5 rozmirnist Gausdorfa divnogo atraktora Lorenca j oderzhali velichinu 2 06 0 01 Pri duzhe velikih znachennyah l displaystyle lambda nbsp l s s b 3 s b 1 displaystyle lambda gg sigma sigma b 3 sigma b 1 nbsp dinamika sistemi Lorenca opisuyetsya zvichajnimi granichnimi ciklami Zokrema pri l 99 96 s 10 b 8 3 displaystyle lambda 99 96 sigma 10 b 8 3 nbsp utvoryuyetsya granichnij cikl sho maye viglyad vuzlovogo tora T 3 2 displaystyle T 3 2 nbsp Pri zmenshenni l displaystyle lambda nbsp perehid do haotichnogo rezhimu vidbuvayetsya charez kaskad bifurkacij podvoyennya periodu Vodnochas fazovi trayektoriyi ne mozhut vtekti na neskinchennist oskilki pri velikih X Y Z vinikayut sili sho povertayut fazovi trayektoriyi v oblast malih znachen zminnih Yaksho domnozhiti pershe rivnyannya Lorenca na X s displaystyle X sigma nbsp druge na Y displaystyle Y nbsp a tretye na Z displaystyle Z nbsp a potim dodati vsi tri rivnyannya to rezultat mozhna zapisati yak 1 2 d d t X 2 s Y 2 Z 2 X Y 2 2 3 4 Y 2 b Z l 2 2 b l 2 4 E X Y Z displaystyle frac 1 2 frac d dt left frac X 2 sigma Y 2 Z 2 right left X frac Y 2 right 2 frac 3 4 Y 2 b left Z frac lambda 2 right 2 frac b lambda 2 4 equiv E X Y Z nbsp Poverhnya sho zadayetsya nerivnistyu E X Y Z 0 displaystyle E X Y Z geq 0 nbsp maye viglyad elipsoyida iz zmishenim centrom mas Neskladno zdogadatisya sho za bud yakogo viboru pochatkovih umov evolyuciya sistemi na atraktori ne prizvede do vihodu za mezhi odnogo z takih elipsoyidiv Kvaziperiodichnih kolivan v sistemi Lorenca ne mozhe buti za zhodnih umov Programi yaki modelyuyut povedinku sistemi rivnyan Lorenca RedaguvatiMatlab Solve over time interval 0 100 with initial conditions 1 1 1 f is set of differential equations a is array containing x y and z variables t is time variable sigma 10 beta 8 3 rho 28 f t a sigma a 1 sigma a 2 rho a 1 a 2 a 1 a 3 beta a 3 a 1 a 2 t a ode45 f 0 100 1 1 1 Runge Kutta 4th 5th order ODE solver plot3 a 1 a 2 a 3 Borland C include lt graphics h gt include lt conio h gt void main double x 3 051522 y 1 582542 z 15 62388 x1 y1 z1 double dt 0 0001 int a 5 b 15 c 1 int gd DETECT gm initgraph amp gd amp gm C BORLANDC BGI do x1 x a x y dt y1 y b x y z x dt z1 z c z x y dt x x1 y y1 z z1 putpixel int 19 3 y x 0 292893 320 int 11 z x 0 292893 392 9 while kbhit closegraph Borland Pascal Program Lorenz Uses CRT Graph Const x Real 3 051522 y Real 1 582542 z Real 1 5 62388 dt 0 0001 a 5 b 15 c 1 Var gd gm Integer x1 y1 z1 Real Begin gd Detect InitGraph gd gm c bp bgi While not KeyPressed Do Begin x1 x a x y dt y1 y b x y z x dt z1 z c z x y dt x x1 y y1 z z1 PutPixel Round 1 9 3 y x 0 292893 320 Round 11 z x 0 292893 392 9 End CloseGraph ReadKey End Python import numpy as np import matplotlib pyplot as plt from scipy integrate import odeint from mpl toolkits mplot3d import Axes3D rho 28 0 sigma 10 0 beta 8 0 3 0 def f state t x y z state Unpack the state vector return sigma y x x rho z y x y beta z Derivatives state0 1 0 1 0 1 0 t np arange 0 0 40 0 0 01 states odeint f state0 t fig plt figure ax fig gca projection 3d ax plot states 0 states 1 states 2 plt show FORTRAN program LorenzSystem real parameter sigma 10 real parameter r 28 real parameter b 2 666666 real parameter dt 01 integer parameter n 1000 real x y z open 1 file result txt form formatted status replace action write x 1 0 y 1 0 z 1 0 do i 1 n 1 x1 x sigma y x dt y1 y r x x z y dt z1 z x y b z dt x x1 y y1 z z1 write 1 x y z enddo print Done close 1 end program LorenzSystem Mathematica data Table With N 1000 dt 0 01 a 5 b 1 j c 1 NestList Module x y z x1 y1 z1 x y z x1 x a x y dt y1 y b x y z x dt z1 z c z x y dt x1 y1 z1 amp 3 051522 1 582542 15 62388 N j 0 5 Graphics3D MapIndexed Hue 0 1 First 2 Point 1 amp data QBASIC FreeBASIC fbc lang qb DIM x y z dt x1 y1 z1 AS SINGLE DIM a b c AS INTEGER x 3 051522 y 1 582542 z 15 62388 dt 0 0001 a 5 b 15 c 1 SCREEN 12 PRINT Press Esc to quit WHILE INKEY lt gt CHR 27 x1 x a x y dt y1 y b x y z x dt z1 z c z x y dt x x1 y y1 z z1 PSET 19 3 y x 292893 300 11 z x 292893 360 9 WEND ENDPosilannya v teksti Redaguvati Lorenz E N Deterministic nonperiodic flow J Atmos Sci 1963 T 20 S 130 141 DOI 10 1175 1520 0469 1963 020 lt 0130 DNF gt 2 0 CO 2 Rubenfeld L A Siegman W L Nonlinear dynamic theory for a double diffusive convection model SIAM J Appl Math 1977 T 32 S 871 Lord Rayleigh On convective currents in a horizontal layer of fluid when the higher temperature is on the under side Phil Mag 1916 T 32 S 529 546 Saltzman B Finite Amplitude Free Convection as an Initial Value Problem I J Atmos Sci 1962 T 19 S 329 341 DOI 0 1175 1520 0469 1962 019 lt 0329 FAFCAA gt 2 0 CO 2 Grassberger P Procaccia I Measuring the strangeness of strange attractors Physica D 1983 T 9 S 189 208 DOI 10 1016 0167 2789 83 90298 1 Arhivovano z dzherela 17 lyutogo 2016 Procitovano 14 chervnya 2022 Vikishovishe maye multimedijni dani za temoyu Divnij atraktor LorencaDzherela RedaguvatiSugakov V J Osnovi sinergetiki K Oberegi 2001 287 s Kuznecov S P Dinamicheskij haos M Fizmatlit 2006 256 s Lihtenberg A Liberman M Regulyarnaya i stohasticheskya dinamika M Mir 1984 528 s Lorenc E Determinirovannoe neperiodicheskoe techenie Strannye attraktory M Mir 1981 S 88 116 Shuster G Determinirovannyj haos Vvedenie M Mir 1988 248 s Ott E Chaos in Dynamical Systems Cambridge University Press 2002 ISBN 0 521 01084 5 Weisstein E W Lorenz attractor Arhivovano 9 kvitnya 2008 u Wayback Machine angl Otrimano z https uk wikipedia org w index php title Divnij atraktor Lorenca amp oldid 36187625