www.wikidata.uk-ua.nina.az
Peretvorennya Lorenca linijni peretvorennya koordinat prostoru Minkovskogo sho zalishayut nezminnim prostorovo chasovij interval Peretvorennya Lorenca pov yazuyut koordinati podij v riznih inercijnih sistemah vidliku ta mayut fundamentalne znachennya v fizici Invariantnist fizichnoyi teoriyi vidnosno peretvoren Lorenca abo zagalna kovariantnist ye neobhidnoyu umovoyu dostovirnosti ciyeyi teoriyi Dvi sistemi vidliku odna z yakih ruhayetsya zi shvidkistyu v displaystyle vec v vidnosno inshoyi Zmist 1 Formulyuvannya 2 Vlastivosti peretvoren Lorenca 3 Istorichna dovidka 4 Vivedennya 4 1 Odnovimirni pokomponentni peretvorennya Lorenca dlya prostorovoyi ta chasovoyi komponent 4 2 Chotirivimirni pokomponentni peretvorennya Lorenca 4 3 Peretvorennya Lorenca dlya radius vektora 4 4 Interval Geometrichnij zmist peretvoren Lorenca 4 5 Peretvorennya Lorenca dlya shvidkosti Invariantnist fundamentalnoyi shvidkosti ta maksimalnist shvidkosti rozpovsyudzhennya vzayemodiyi 4 6 Peretvorennya Lorenca dlya sili 5 Formi zapisu peretvoren Lorenca 5 1 Matrichnij zapis peretvoren Lorenca 5 2 Formuli peretvoren Lorenca z dovilnoyu oriyentaciyeyu osej sistem 5 3 Giperbolichna forma zapisu 6 Peretvorennya Lorenca dlya elektromagnitnogo polya 6 1 Otrimannya peretvoren dlya napruzhenosti elektrichnogo polya 6 2 Peretvorennya Lorenca dlya vektora indukciyi magnitnogo polya 6 3 Invarianti peretvoren Lorenca dlya poliv ta yih zmist 7 Peretvorennya Lorenca dlya zagalnogo polya 8 Primitki 9 Div takozh 10 LiteraturaFormulyuvannya RedaguvatiNajbilsh rozpovsyudzhena forma zapisu peretvoren Lorenca zv yazuye koordinati podiyi v inercijnij sistemi vidliku K z koordinatami tiyeyi zh podiyi v sistemi K yaka ruhayetsya vidnosno K zi shvidkistyu V vzdovzh osi x x x V t 1 V 2 c 2 y y z z t t V c 2 x 1 V 2 c 2 displaystyle x frac x Vt sqrt 1 frac V 2 c 2 quad y y quad z z quad t frac t V c 2 x sqrt 1 frac V 2 c 2 nbsp de x y z t koordinati podiyi v sistemi K x y z t koordinati tiyeyi zh podiyi v sistemi K V vidnosna shvidkist dvoh sistem c shvidkist svitla Zvorotni formuli perehid vid sistemi K do K mozhna otrimati zaminoyu V V x x V t 1 V 2 c 2 y y z z t t V c 2 x 1 V 2 c 2 displaystyle x frac x Vt sqrt 1 frac V 2 c 2 quad y y quad z z quad t frac t V c 2 x sqrt 1 frac V 2 c 2 nbsp Vlastivosti peretvoren Lorenca RedaguvatiZ formul peretvoren legko pobachiti sho pri granichnomu perehodi c displaystyle c to infty nbsp do klasichnoyi mehaniki abo sho te zh same pri shvidkostyah znachno menshih shvidkosti svitla formuli peretvorennya Lorenca perehodyat v peretvorennya Galileya za principom vidpovidnosti Pri V gt c koordinati x t stayut uyavnimi sho oznachaye toj fakt sho ruh zi shvidkistyu bilshoyu za shvidkist svitla v vakuumi nemozhlivij Nemozhlivo navit vikoristovuvati sistemu vidliku yaka b ruhalas zi shvidkistyu svitla bo todi znamenniki u formulah dorivnyuvali b nulyu Na vidminu vid peretvoren Galileya peretvorennya Lorenca nekomutativni rezultat dvoh poslidovnih peretvoren Lorenca zalezhit vid yihnogo poryadku Ce mozhna pobachiti z formalnogo tlumachennya peretvoren Lorenca yak obertan chotirivimirnoyi sistemi koordinat de yak vidomo rezultat dvoh obertan navkolo riznih osej zalezhit vid poryadku yih vikonannya Vinyatkom z cogo pravila ye lishe peretvorennya z paralelnimi vektorami shvidkostej V1 V2 yaki ekvivalentni povorotam sistemi koordinat vidnosno odniyeyi osi Istorichna dovidka RedaguvatiPoshtovhom do vidkrittya peretvoren Lorenca posluzhiv nulovij rezultat interferencijnogo eksperimentu Majkelsona Morli Dlya usunennya viyavlenih trudnoshiv teoriyi efiru Lorenc pripustiv sho vsi tila pri postupalnomu rusi zminyuyut svoyi rozmiri a same sho zmenshennya rozmiriv tila v napryamku ruhu viznachayetsya mnozhnikom ϰ 1 v 2 c 2 displaystyle varkappa sqrt 1 v 2 c 2 nbsp de ϰ displaystyle varkappa nbsp zmenshennya rozmiriv v napryamku perpendikulyarnomu ruhu tila Neobhidno bulo organichno vvesti ce zmenshennya rozmiriv u teoriyu Formuli sho vidomi zaraz yak peretvorennya Lorenca pershim viviv Dzhozef Larmor v 1900 roci takim chinom vin vrahuvav zminu masshtabu chasu pri rusi 1904 roku Lorenc doviv invariantnist rivnyan Maksvella vidnosno takih peretvoren ale v nih she vhodiv neviznachenij mnozhnik ϰ displaystyle varkappa nbsp ta rizni inercijni sistemi ne rozglyadalisya povnistyu rivnopravnimi V 1905 Anri Puankare vipraviv progalini v praci Lorenca ta dosyag povnoyi kovariantnosti elektrodinamiki Princip vidnosnosti buv viznachenij nim yak zagalne ta stroge polozhennya Same v pracyah Puankare vpershe traplyayutsya nazvi peretvorennya Lorenca ta grupa Lorenca Vivedennya RedaguvatiV ramkah osnovnogo vivedennya vikoristovuyutsya chotiri aksiomi Odnovimirni pokomponentni peretvorennya Lorenca dlya prostorovoyi ta chasovoyi komponent Redaguvati Odnovimirni pokomponentni peretvorennya Lorenca dlya prostorovoyi ta chasovoyi komponent Nehaj funkciyi peretvoren mizh rezultatami sposterigannya deyakoyi podiyi u riznih ISV K K displaystyle K K nbsp iz vidnosnoyu shvidkistyu u c o n s t displaystyle mathbf u const nbsp dlya odnovimirnogo vipadku zadayutsya yak x f x u t t g x u t 0 displaystyle x f x u t quad t g x u t qquad 0 nbsp Vrahovuyuchi te sho prostir chas odnoridnij 1 yakisno kozhna tochka pustogo prostoru chasu nichim ne vidriznyayetsya vid inshih tochok mozhna stverdzhuvati sho vsi geometrichni spivvidnoshennya mizh geometrichnimi ob yektami ne zminyuyutsya v zalezhnosti vid viboru tochki pochatku koordinat ISV Ce oznachaye sho funkciyi 0 displaystyle 0 nbsp budut linijnimi funkciyami svoyih argumentiv prichomu koeficiyenti pri argumentah budut zalezhati lishe vid vidnosnoyi shvidkosti ISV x A x B t c o n s t 1 t C x D t c o n s t 2 0 1 displaystyle x Ax Bt const 1 quad t Cx Dt const 2 qquad 0 1 nbsp Dovedennya Nehaj ye beskinechno male zmishennya d x displaystyle dx nbsp u sistemi K displaystyle K nbsp Vidpovidne zmishennya d x displaystyle dx nbsp sistemi K displaystyle K nbsp bude rivne d x displaystyle dx nbsp a promizhok chasu sho vidpovidaye zmishennyu d t displaystyle dt nbsp Todi dlya funkciyi koordinati dlya funkciyi chasu analogichno d x f x d x f t d t f u d u f x d x f t d t displaystyle dx frac partial f partial x dx frac partial f partial t dt frac partial f partial u du frac partial f partial x dx frac partial f partial t dt nbsp Oskilki prostir chas odnoridnij to zmishennya d x displaystyle dx nbsp ne povinno zalezhati vid tochki prostoru chasu a otzhe f x f t displaystyle frac partial f partial x frac partial f partial t nbsp ye odnakovimi dlya vsih tochok prostoru ta usih momentiv chasu f x f t c o n s t displaystyle left frac partial f partial x frac partial f partial t const right nbsp a otzhe ye postijnimi pri zadanij vidnosnij shvidkosti Otzhe yih mozhna u zapisi funkciyi f x u t displaystyle f x u t nbsp predstaviti u viglyadi koeficiyentiv yaki mozhut zalezhati lishe vid vidnosnoyi shvidkosti oskilki funkciya f f x u t displaystyle f f x u t nbsp zalezhit lishe vid koordinati chasu ta vidnosnoyi shvidkosti ISV x A x B t c o n s t 1 t C x D t c o n s t 2 displaystyle x Ax Bt const 1 t Cx Dt const 2 nbsp de A A u B B u C C u D D u displaystyle A A u quad B B u quad C C u quad D D u nbsp Bilsh gliboke dovedennya Nehaj znovu zh taki x f x t t g x t d x f x d x f t d t d t g x d x g t d t displaystyle x f x t quad t g x t Rightarrow dx f x dx f t dt quad dt g x dx g t dt nbsp de f k g k displaystyle f k g k nbsp pohidni vid funkcij po argumentu k Todi shvidkist deyakogo cilovogo tila v ISV A vidnosno yakoyi kinematichni harakteristiki vidpovidayut znachennyam x t displaystyle x t nbsp rivna v d x d t f x d x f t d t g x d x g t d t f x v f t g x v g t displaystyle v frac dx dt frac f x dx f t dt g x dx g t dt frac f x v f t g x v g t nbsp Yaksho vvazhati sho shvidkist postijna ce mozhna zrobiti oskilki funkciyi f g displaystyle f g nbsp ne zalezhat vid neyi ta vikoristati ideyu odnoridnosti prostoru chasu to shvidkist yak funkciya vid f g displaystyle f g nbsp ne zalezhit vid x t displaystyle x t nbsp Todi beruchi chastinni pohidni po x t displaystyle x t nbsp vid virazu dlya shvidkosti mozhna otrimati v x f x x v f x t g x v g t g x x v g x t f x v f t g x v g t 2 f x x v 2 g x f x x v g t f x t g x v f x t g t g x x f x v 2 g x x v f t g x t f x v g x t f t g x v g t 2 0 displaystyle frac partial v partial x frac f xx v f xt g x v g t frac g xx v g xt f x v f t g x v g t 2 frac f xx v 2 g x f xx vg t f xt g x v f xt g t g xx f x v 2 g xx vf t g xt f x v g xt f t g x v g t 2 0 Rightarrow nbsp v 2 f x x g x g x x f x v f x x g t f x t g x g x x f t g x t f x f x t g t g x t f t 0 displaystyle Rightarrow v 2 f xx g x g xx f x v f xx g t f xt g x g xx f t g xt f x f xt g t g xt f t 0 nbsp Dali znovu zh taki mozhna vikoristati ideyu dovilnosti shvidkosti v displaystyle v nbsp bez zmenshennya zagalnosti otrimanih viraziv i zanuliti yiyi Zvidsi f x t g t g x t f t 0 2 displaystyle f xt g t g xt f t qquad 0 2 nbsp f x x g t f x t g x g x x f t g x t f x 0 3 displaystyle f xx g t f xt g x g xx f t g xt f x qquad 0 3 nbsp f x x g x g x x f x 0 4 displaystyle f xx g x g xx f x qquad 0 4 nbsp Analogichno dlya pohidnoyi virazu v displaystyle v nbsp po chasu mozhna zapisati v t v 2 f x t g x g x t f x v f x t g t f t t g x g x t f t g t t f x f t t g t g t t f t g x v g t 2 0 displaystyle frac partial v partial t frac v 2 f xt g x g xt f x v f xt g t f tt g x g xt f t g tt f x f tt g t g tt f t g x v g t 2 0 Rightarrow nbsp f x t g x g x t f x 0 5 displaystyle Rightarrow f xt g x g xt f x qquad 0 5 nbsp f x t g t f t t g x g x t f t g t t f x 0 6 displaystyle f xt g t f tt g x g xt f t g tt f x qquad 0 6 nbsp f t t g t g t t f t 0 7 displaystyle f tt g t g tt f t qquad 0 7 nbsp Yaksho vidnyati vid 0 3 0 5 displaystyle 0 3 0 5 nbsp a vid 0 6 displaystyle 0 6 nbsp 0 2 displaystyle 0 2 nbsp mozhna otrimati f x x g t g x x f t 0 8 displaystyle f xx g t g xx f t qquad 0 8 nbsp f t t g x g x x f x 0 9 displaystyle f tt g x g xx f x qquad 0 9 nbsp Domnozhivshi 0 2 displaystyle 0 2 nbsp na f t displaystyle f t nbsp a 0 8 displaystyle 0 8 nbsp na f x displaystyle f x nbsp i pislya cogo vidnyavshi ci virazi i analogichno z domnozhennyam 0 7 displaystyle 0 7 nbsp na f x displaystyle f x nbsp i 0 9 displaystyle 0 9 nbsp na f t displaystyle f t nbsp mozhna otrimati sho f x x g t f x g x x f t f x f x x g x f t g x x f x f t f x x g t f x g x f t 0 displaystyle f xx g t f x g xx f t f x f xx g x f t g xx f x f t f xx g t f x g x f t 0 nbsp f t t g t f x g t t f t f x f t t g x f t g x x f t f x f t t g t f x g x f t 0 displaystyle f tt g t f x g tt f t f x f tt g x f t g xx f t f x f tt g t f x g x f t 0 nbsp Virazi u duzhkah vidpovidayut yakobianam yaki ne mozhut buti rivnimi nulyu Zvidsi f t t f x x 0 displaystyle f tt f xx 0 nbsp Vikoristovuyuchi ci rivnosti i virazi 0 2 0 7 displaystyle 0 2 0 7 nbsp mozhna otrimati umovi rivnosti nulyu vsih inshih chastinnih pohidnih drugogo poryadku Zvidsi sliduye sho peretvorennya funkciyi f x t g x t displaystyle f x t g x t nbsp povinni buti linijnimi Pri nulovomu znachenni t t displaystyle t t nbsp vikonuyetsya nastupna umova t t 0 x x 0 displaystyle t t 0 Rightarrow x x 0 nbsp tobto pri pochatku vidliku chasu pochatki koordinat ISV zbigayutsya Ce oznachaye rivnist nulyu konstant u 0 1 displaystyle 0 1 nbsp prichomu zagalnist peretvoren zmenshena ne bude cherez odnoridnist prostoru chasu x A x B t t C x D t 1 displaystyle x Ax Bt quad t Cx Dt qquad 1 nbsp Todi sistema K displaystyle K nbsp bude ruhatisya vidnosno tochki x 0 displaystyle x 0 nbsp zi zminoyu koordinati u x u t displaystyle x ut nbsp a tochka x displaystyle x nbsp bude ruhatisya vidnosno sistemi x 0 displaystyle x 0 nbsp zi zminoyu koordinati u x u t displaystyle x ut nbsp Yaksho pidstaviti dani znachennya u 1 displaystyle 1 nbsp mozhna znajti velichini A B C D displaystyle A B C D nbsp 0 A u t B t B A u 2 t C x D t displaystyle begin cases 0 Aut Bt Rightarrow B Au qquad 2 t Cx Dt end cases nbsp u t B t B u t t u D 3 t D t t t D displaystyle begin cases ut Bt Rightarrow B frac ut t uD qquad 3 t Dt Rightarrow frac t t D end cases nbsp Z 2 3 displaystyle 2 3 nbsp mozhna dijti visnovku sho A D displaystyle A D nbsp Mozhna vvesti funkciyi vidnosnih shvidkostej g u A s u C D displaystyle gamma u A quad sigma u frac C D nbsp Todi 1 displaystyle 1 nbsp prijme viglyad x g u x u t t g u t s u x 4 displaystyle begin cases x gamma u x ut t gamma u t sigma u x end cases qquad 4 nbsp Dlya viznachennya vidu funkcij treba vvesti dodatkovu aksiomatiku Nehaj inercialni sistemi vidliku rivnopravni 2 Ce oznachaye sho perehid vid K displaystyle K nbsp do K displaystyle K nbsp u 4 displaystyle 4 nbsp bude takim zhe yak i vid K displaystyle K nbsp do K displaystyle K nbsp i obernene peretvorennya bude vidriznyatisya vid pryamogo z tochnistyu do znaka vidnosnoyi shvidkosti u gt u displaystyle u gt u nbsp Todi mozhna rozglyanuti tri ISV K 1 K 2 K 3 displaystyle K 1 K 2 K 3 nbsp prichomu u K 2 K 1 u 1 u K 3 K 2 u 2 displaystyle u K 2 K 1 u 1 u K 3 K 2 u 2 nbsp Todi 4 displaystyle 4 nbsp dlya peretvoren mizh ISV prijme viglyad x 2 g 1 x 1 u 1 t 1 t 2 g 1 t 1 s 1 x 1 displaystyle begin cases x 2 gamma 1 x 1 u 1 t 1 t 2 gamma 1 t 1 sigma 1 x 1 end cases nbsp x 3 g 2 x 2 u 2 t 2 g 2 g 1 x 1 u 1 t 1 u 2 g 1 t 1 s 1 x 1 g 1 g 2 x 1 1 u 2 s 1 t 1 u 1 u 2 g 3 x 1 u 3 t 1 t 3 g 2 t 2 s 2 x 2 g 2 g 1 t 1 s 1 x 1 s 2 g 1 x 1 u 1 t 1 g 2 g 1 t 1 1 s 2 u 1 x 1 s 1 s 2 g 3 t 1 s 3 x 1 5 displaystyle begin cases x 3 gamma 2 x 2 u 2 t 2 gamma 2 left gamma 1 x 1 u 1 t 1 u 2 gamma 1 t 1 sigma 1 x 1 right gamma 1 gamma 2 left x 1 1 u 2 sigma 1 t 1 u 1 u 2 right gamma 3 x 1 u 3 t 1 t 3 gamma 2 t 2 sigma 2 x 2 gamma 2 left gamma 1 t 1 sigma 1 x 1 sigma 2 gamma 1 x 1 u 1 t 1 right gamma 2 gamma 1 left t 1 1 sigma 2 u 1 x 1 sigma 1 sigma 2 right gamma 3 t 1 sigma 3 x 1 end cases qquad 5 nbsp Todi yaksho pririvnyati u drugomu rivnyanni 5 displaystyle 5 nbsp g 3 displaystyle gamma 3 nbsp do g 2 g 1 t 1 1 s 2 u 1 displaystyle gamma 2 gamma 1 t 1 1 sigma 2 u 1 nbsp ta u pershomu rivnyanni g 3 displaystyle gamma 3 nbsp do g 1 g 2 1 u 2 s 1 displaystyle gamma 1 gamma 2 1 u 2 sigma 1 nbsp to mozhna otrimati sho 1 s 2 u 1 1 u 2 s 1 s 1 u 1 s 2 u 2 a c o n s t displaystyle 1 sigma 2 u 1 1 u 2 sigma 1 Rightarrow frac sigma 1 u 1 frac sigma 2 u 2 alpha const nbsp Todi vidpovidno do principa rivnopravnosti ISV mozhna zapisati koristuyuchis 4 displaystyle 4 nbsp x g u x u t g u g u x u t g u t s u x u g u g u x 1 u s u displaystyle x gamma u x ut gamma u gamma u x ut gamma u t sigma u x u gamma u gamma u x 1 u sigma u nbsp g u g u x 1 a u 2 g u g u 1 1 a u 2 6 displaystyle gamma u gamma u x 1 alpha u 2 Rightarrow gamma u gamma u frac 1 1 alpha u 2 qquad 6 nbsp Nakinec yaksho vvesti princip izotropiyi prostoru v ISV 3 to mozhna stverdzhuvati sho pri inversiyah sistemi koordinat x gt x displaystyle x gt x nbsp x gt x u gt u displaystyle x gt x u gt u nbsp peretvorennya 4 displaystyle 4 nbsp ne zminyat viglyadu Todi x g u x u t displaystyle x gamma u x ut nbsp z chogo vidno sho pri povtornij inversiyi cej viraz perejde u pochatkovij do pershoyi inversiyi tilki za umovi sho g u displaystyle gamma u nbsp ye parnoyu funkciyeyu shvidkosti tobto spravdzhuyetsya rivnist g u g u displaystyle gamma u gamma u nbsp Tomu zastosovuyuchi 6 displaystyle 6 nbsp mozhna bude otrimati g u 1 1 a u 2 displaystyle gamma u frac 1 sqrt 1 alpha u 2 nbsp Ochevidno sho a displaystyle alpha nbsp bude mati rozmirnist kvadratu shvidkosti v 1 stepeni a ot znak ciyeyi konstanti mozhna otrimati lishe eksperimentalno Eksperiment zhe pokazuye sho znak ciyeyi konstanti dodatnij a otzhe g u 1 1 u 2 c 2 displaystyle gamma u sqrt frac 1 1 frac u 2 c 2 nbsp Todi 4 displaystyle 4 nbsp prijmut viglyad x x u t 1 u 2 c 2 t t u x c 2 1 u 2 c 2 7 displaystyle x frac x ut sqrt 1 frac u 2 c 2 qquad t frac t frac ux c 2 sqrt 1 frac u 2 c 2 qquad 7 nbsp tobto viglyad odnovimirnih peretvoren Lorenca dlya koordinat Chotirivimirni pokomponentni peretvorennya Lorenca Redaguvati Chotirivimirni pokomponentni peretvorennya Lorenca Yaksho uzagalniti peretvorennya Lorenca na vipadok trivimirnogo prostoru prichomu u u 0 0 displaystyle mathbf u u 0 0 nbsp to viglyad 0 displaystyle 0 nbsp zminitsya do x f x y z t y g x y z t z F x y z t t G x y z t displaystyle x f x y z t quad y g x y z t quad z F x y z t quad t G x y z t nbsp Vikoristovuyuchi mirkuvannya navedeni u poperednomu pidrozdili mozhna dijti visnovku sho pri zbigovi pochatku koordinat pri pochatku vidliku funkciyi zv yazku koordinat g F displaystyle g F nbsp pri perehodi mizh ISV nabudut viglyadu y A 1 x B 1 y C 1 z D 1 t z A 2 x B 2 y C 2 z D 2 t 8 displaystyle y A 1 x B 1 y C 1 z D 1 t quad z A 2 x B 2 y C 2 z D 2 t qquad 8 nbsp Nehaj dali dlya pershoyi rivnosti rozglyadayetsya tochka y 0 y 0 displaystyle y 0 Rightarrow y 0 nbsp a dlya drugoyi z 0 z 0 displaystyle z 0 Rightarrow z 0 nbsp znovu zh taki cherez umovu odnoridnosti prostoru chasu zagalnist funkcij cherez vibir osoblivih znachen koordinat ne zmenshuyetsya Todi rivnosti 0 A 1 x C 1 z D 1 t 0 A 2 x B 2 y D 2 t displaystyle 0 A 1 x C 1 z D 1 t quad 0 A 2 x B 2 y D 2 t nbsp povinni vikonuvatis dlya bud yakih x y z t displaystyle x y z t nbsp Ce oznachaye sho A 1 C 1 D 1 A 2 B 2 D 2 0 displaystyle A 1 C 1 D 1 A 2 B 2 D 2 0 nbsp a otzhe 8 displaystyle 8 nbsp nabude viglyadu y K y z K z y 1 K y z 1 K z displaystyle y Ky quad z Kz Rightarrow y frac 1 K y quad z frac 1 K z nbsp prichomu B 1 C 2 displaystyle B 1 C 2 nbsp yak naslidok rivnopravnosti koordinat y z displaystyle y z nbsp vidnosno umovi u u 0 0 displaystyle mathbf u u 0 0 nbsp Otrimani rivnosti zv yazku shtrihovanih i neshtrihovanih koordinat mozhna sprostiti vikoristavshi princip rivnopravnosti ISV Oskilki ISV rivnopravni to vidnosna zmina K displaystyle K nbsp povinna buti rivna 1 K displaystyle frac 1 K nbsp zvidki K 1 displaystyle K 1 nbsp Obirayetsya variant K 1 displaystyle K 1 nbsp oskilki pri K 1 displaystyle K 1 nbsp formalnij perehid vid odnoyi ISV do takoyi zh samoyi prizvodiv bi do inversiyi osej Otzhe y y z z displaystyle y y quad z z nbsp Takim chinom pri rusi po osi O x displaystyle O x nbsp komponenti y z displaystyle y z nbsp ne zmishuyutsya odna z odnoyu a takozh z x t displaystyle x t nbsp i peretvoryuyutsya okremo Ce oznachaye takozh sho koeficiyenti pri y z displaystyle y z nbsp u virazah dlya x t displaystyle x t nbsp rivni nulyu Z cogo nakinec sliduye sho za opisanih vishe umov x g x u t y z z z t g t u x c 2 9 displaystyle x gamma x ut quad y z quad z z quad t gamma left t frac ux c 2 right qquad 9 nbsp Peretvorennya Lorenca dlya radius vektora Redaguvati Peretvorennya Lorenca dlya radius vektora U dovilnomu vipadku koli radius vektor ne spivnapryamlenij z vektorom vidnosnoyi shvidkosti dvoh ISV mozhna otrimati bilsh zagalnij viglyad peretvoren Lorenca rozklavshi radius vektor na vektor sho paralelnij vektoru vidnosnoyi shvidkosti ta vektor sho perpendikulyarnij vektoru vidnosnoyi shvidkosti Todi vikoristovuyuchi te sho yak sliduye z minulogo punktu ortogonalni po vidnoshennyu do vektora vidnosnoyi shvidkosti komponenti radius vektora perehodyat sami u sebe mozhna otrimati r r r r r r r u t 1 u 2 c 2 t t u r c 2 1 u 2 c 2 displaystyle mathbf r mathbf r mathbf r perp qquad mathbf r perp mathbf r perp qquad mathbf r frac mathbf r mathbf u t sqrt 1 frac u 2 c 2 qquad t frac t frac mathbf u cdot mathbf r c 2 sqrt 1 frac u 2 c 2 nbsp i t t u r c 2 1 u 2 c 2 g t u r c 2 10 displaystyle t frac t frac mathbf u cdot mathbf r c 2 sqrt 1 frac u 2 c 2 gamma t frac mathbf u cdot mathbf r c 2 qquad 10 nbsp r r r r r r u t 1 u 2 c 2 r r r 1 u 2 c 2 u t 1 u 2 c 2 G g 1 u 2 c 2 r r g 1 g u t r G r u 2 c 2 g u t displaystyle mathbf r mathbf r perp mathbf r mathbf r mathbf r frac mathbf r mathbf u t sqrt 1 frac u 2 c 2 mathbf r mathbf r frac mathbf r sqrt 1 frac u 2 c 2 frac mathbf u t sqrt 1 frac u 2 c 2 left Gamma frac gamma 1 frac u 2 c 2 right mathbf r mathbf r gamma 1 gamma mathbf u t mathbf r Gamma mathbf r frac u 2 c 2 gamma mathbf u t nbsp r G u u r c 2 g u t 10 displaystyle mathbf r Gamma mathbf u frac mathbf u cdot mathbf r c 2 gamma mathbf u t qquad 10 nbsp yaki ye peretvorennyami Lorenca dlya radius vektora Interval Geometrichnij zmist peretvoren Lorenca Redaguvati Interval Z otrimanih peretvoren Lorenca elementarno vivesti invariantnist velichini c 2 D t 2 D x 2 c 2 D t 2 D x 2 displaystyle c 2 Delta t 2 Delta x 2 c 2 Delta t 2 Delta x 2 nbsp yaka nazivayetsya intervalom D S displaystyle Delta S nbsp zvichajno jogo mozhna zapisati i u viglyadi neskinchenno malih prirostiv Vivedennya Dlya dovedennya dostatno rozpisati pravu chastinu u yavnomu viglyadi vikoristovuyuchi peretvorennya Lorenca c 2 D t 2 D x 2 t 2 u x 2 c 2 t 1 u x 1 c 2 2 x 2 u t 2 x 1 u t 1 2 1 u 2 c 2 c 2 D t 2 2 u D t D x u 2 c 2 D x 2 D x 2 2 u D x D t u 2 D t 2 1 u 2 c 2 displaystyle c 2 Delta t 2 Delta x 2 frac t 2 frac ux 2 c 2 t 1 frac ux 1 c 2 2 x 2 ut 2 x 1 ut 1 2 1 frac u 2 c 2 frac c 2 Delta t 2 2u Delta t Delta x frac u 2 c 2 Delta x 2 Delta x 2 2u Delta x Delta t u 2 Delta t 2 1 frac u 2 c 2 nbsp c 2 D t 2 u 2 D t 2 D x 2 u 2 c 2 D x 2 1 u 2 c 2 c 2 D t 2 D x 2 1 u 2 c 2 1 u 2 c 2 c 2 D t 2 D x 2 displaystyle frac c 2 Delta t 2 u 2 Delta t 2 Delta x 2 frac u 2 c 2 Delta x 2 1 frac u 2 c 2 frac c 2 Delta t 2 Delta x 2 1 frac u 2 c 2 1 frac u 2 c 2 c 2 Delta t 2 Delta x 2 nbsp Interval maye zmist vidstani mizh podiyami u chotirivimirnomu prostori chasi Znak intervala viznachaye tip ciyeyi vidstani Yaksho dvi podiyi prichinno pov yazani to prijmayuchi shvidkist rozpovsyudzhennya podiyi rivnoyu U displaystyle U nbsp mozhna zapisati viraz dlya intervalu takim chinom d S 2 c 2 d t 2 d x 2 d y 2 d z 2 d x 2 d y 2 d z 2 U 2 d t 2 d t 2 c 2 U 2 c 2 d t 2 1 U 2 c 2 0 displaystyle dS 2 c 2 dt 2 dx 2 dy 2 dz 2 dx 2 dy 2 dz 2 U 2 dt 2 dt 2 c 2 U 2 c 2 dt 2 1 frac U 2 c 2 geqslant 0 nbsp tobto kvadrat intervalu zavzhdi dodatnij Vidpovidnij interval nazivayut chasopodibnim Otrimanij viraz ye kvadratom vlasnogo chasu podiyi yakij ye invariantnim vidnosno bud yakoyi ISV ponyattya vlasnogo chasu tisno pov yazano z principom najmenshoyi diyi Yaksho zh dana umova ne vikonuyetsya to interval nazivayut prostoropodibnim i vin virazhaye umovu roz yednanosti v prostori podij pri yih prichinnij nezalezhnosti Geometrichnij zmist peretvoren Lorenca Interval S displaystyle S nbsp yakij ye modulem 4 vektora komponentami yakogo ye prostorovimi ta chasovimi koordinatami invariant Pri perehodi vid odniyeyi ISV do inshoyi invariantom jogo zalishayut abo paralelni perenosi abo kruchennya bazisa Paralelni perenosi lishe zmishuyut pochatok koordinat tomu ne ye interesnimi Todi zalishayutsya lishe kruchennya bazisa yaki u zagalnomu viglyadi pri perehodi vid ISV A do ISV A mozhna predstaviti tak x x c h PS c t s h PS 1 displaystyle x x ch Psi ct sh Psi qquad 1 nbsp c t x s h PS c t c h PS 2 displaystyle ct x sh Psi ct ch Psi qquad 2 nbsp Zvichajno virazi 1 2 displaystyle 1 2 nbsp zalishayut velichinu intervalu S displaystyle S nbsp invariantnoyu x 2 c 2 t 2 x 2 c h 2 PS 2 x c t c h PS s h PS c 2 t 2 s h 2 PS x 2 s h 2 PS 2 x c t c h PS s h PS c 2 t 2 c h 2 PS displaystyle x 2 c 2 t 2 x 2 ch 2 Psi 2x ct ch Psi sh Psi c 2 t 2 sh 2 Psi x 2 sh 2 Psi 2x ct ch Psi sh Psi c 2 t 2 ch 2 Psi nbsp x 2 c 2 t 2 c h 2 PS s h 2 PS x 2 c 2 t 2 displaystyle x 2 c 2 t 2 ch 2 Psi sh 2 Psi x 2 c 2 t 2 nbsp Dovedennya virnosti danogo viglyadu peretvoren Lorenca Yaksho roztashuvati ISV A na pochatku koordinat tobto x 0 displaystyle x 0 nbsp ta rozdiliti 1 displaystyle 1 nbsp na 2 displaystyle 2 nbsp mozhna otrimati x c t u c t h PS s h PS u c 1 u 2 c 2 c h PS 1 1 u 2 c 2 3 displaystyle frac x ct frac u c th Psi Rightarrow sh Psi frac u c sqrt 1 frac u 2 c 2 ch Psi frac 1 sqrt 1 frac u 2 c 2 qquad 3 nbsp Zastosovuyuchi 3 displaystyle 3 nbsp do 1 2 displaystyle 1 2 nbsp mozhna otrimati x x c t u c 1 u 2 c 2 x t u 1 u 2 c 2 y y z z t x u c 2 t 1 u 2 c 2 4 displaystyle x frac x frac ct u c sqrt 1 frac u 2 c 2 frac x t u sqrt 1 frac u 2 c 2 y y z z t frac frac x u c 2 t sqrt 1 frac u 2 c 2 qquad 4 nbsp Viraz 4 ye virazom dlya peretvoren Lorenca prostorovoyi ta chasovoyi koordinat Otzhe uzagalnyuyuchi napisane mozhna stverdzhuvati sho z naboru aksiom yaki buli vikoristani pri vivedenni peretvoren Lorenca sliduye sho mi zhivemo u lokalno psevdoevklidovomu prostori rozmirnosti 3 1 displaystyle 3 1 nbsp prichomu interval nabuvaye takozh zmistu dovzhini 4 vektoriv u takomu prostori Peretvorennya Lorenca dlya shvidkosti Invariantnist fundamentalnoyi shvidkosti ta maksimalnist shvidkosti rozpovsyudzhennya vzayemodiyi Redaguvati Peretvorennya Lorenca dlya shvidkosti Invariantnist fundamentalnoyi shvidkosti ta maksimalnist shvidkosti rozpovsyudzhennya vzayemodiyi Yaksho prodiferenciyuvati virazi 9 displaystyle 9 nbsp ta rozdiliti pershij viraz na ostannij mozhna otrimati d x d t v x d x d t d t d t u 1 u 2 c 2 d x d t u c 2 d t d t 1 u 2 c 2 u v x 1 u v x c 2 11 displaystyle frac dx dt v x frac frac dx dt frac dt dt u sqrt 1 frac u 2 c 2 frac dx dt frac u c 2 frac dt dt sqrt 1 frac u 2 c 2 frac u v x 1 frac uv x c 2 qquad 11 nbsp d y z d t v y z d y z d t 1 u 2 c 2 d t d t d x d t u c 2 v y z 1 u 2 c 2 1 v x u c 2 11 displaystyle frac dy z dt v y z frac frac dy z dt sqrt 1 frac u 2 c 2 frac dt dt frac dx dt frac u c 2 frac v y z sqrt 1 frac u 2 c 2 1 frac v x u c 2 qquad 11 nbsp sho ye peretvorennyami Lorenca dlya komponent shvidkosti Yaksho prodiferenciyuvati virazi 10 displaystyle 10 nbsp ta rozdiliti drugij viraz na pershij mozhna otrimativ v G u u v c 2 g u g 1 u v c 2 12 displaystyle mathbf v frac mathbf v Gamma mathbf u frac mathbf u cdot mathbf v c 2 gamma mathbf u gamma 1 frac mathbf u cdot mathbf v c 2 qquad 12 nbsp sho ye peretvorennyami Lorenca dlya vektora shvidkosti Z 11 displaystyle 11 nbsp napryamu sliduye invariantnist shvidkosti sho rivna c displaystyle c nbsp vidnosno bud yakoyi ISV Dlya dovedennya cogo docilno rozglyanuti dvi ISV A A displaystyle A A nbsp u yakih tilo maye shvidkist u 0 u 0 x u 0 y u 0 z u 1 u 1 x u 1 y u 1 z displaystyle u 0 u 0 x u 0 y u 0 z u 1 u 1 x u 1 y u 1 z nbsp vidpovidno prichomu vektor shvidkostej dlya sproshennya u oboh vipadkah oriyentovanij po osi x displaystyle x nbsp Todi vidpovidno do peretvoren Lorenca pri perehodi do ISV A displaystyle A nbsp sho ruhayetsya zi shvidkistyu u displaystyle u nbsp vidnosno ISV A displaystyle A nbsp komponenti shvidkosti zminyuyutsya takim chinom u 1 x u 0 x u 1 u 0 x u c 2 13 displaystyle u 1 x frac u 0 x u 1 frac u 0 x u c 2 qquad 13 nbsp u 1 y u 0 y 1 u 0 x u c 2 1 u 2 c 2 14 displaystyle u 1 y frac u 0 y 1 frac u 0 x u c 2 sqrt 1 frac u 2 c 2 qquad 14 nbsp u 1 z u 0 z 1 u 0 x u c 2 1 u 2 c 2 15 displaystyle u 1 z frac u 0 z 1 frac u 0 x u c 2 sqrt 1 frac u 2 c 2 qquad 15 nbsp Oskilki u 0 2 u 0 x 2 u 0 y 2 u 0 z 2 c 2 displaystyle u 0 2 u 0 x 2 u 0 y 2 u 0 z 2 c 2 nbsp u 1 2 u 1 x 2 u 1 y 2 u 1 z 2 16 displaystyle u 1 2 u 1 x 2 u 1 y 2 u 1 z 2 qquad 16 nbsp to z urahuvannyam 13 15 displaystyle 13 15 nbsp i pochatkovih pripushen viraz 16 displaystyle 16 nbsp mozhna perepisati u 1 2 u 1 x 2 u 1 u 1 x u 0 x u 1 u 0 x u c 2 displaystyle u 1 2 u 1 x 2 Rightarrow u 1 u 1 x frac u 0 x u 1 frac u 0 x u c 2 nbsp Todi mozhna viraziti shvidkist u 1 displaystyle u 1 nbsp u 1 c 2 u 0 x u c 2 u 0 x u c 2 c u c c u c displaystyle u 1 frac c 2 u 0 x u c 2 u 0 x u frac c 2 c u c c u c nbsp z chogo vidno sho shvidkist c displaystyle c nbsp invariantna vidnosno bud yakoyi ISV Analogichno mozhna otrimati danij rezultat u bilsh zagalnomu vipadku dlya modulya vektora shvidkosti svitla Nehaj u peretvorennyah dlya vektora shvidkosti v c displaystyle mathbf v mathbf c nbsp Todi vzyavshi modul vid peretvorennya dlya vektora shvidkosti i ob yednavshi u otrimanij pidkorenevij rivnosti pershij dodanok z ostannim drugij z chetvertim a tretij z p yatim mozhna otrimati v v v 1 g 1 u v c 2 v 2 2 G c 2 u v 2 2 g u v G 2 c 4 u 2 u v 2 2 G g c 2 u 2 u v g 2 u 2 displaystyle mathbf v sqrt mathbf v cdot mathbf v frac 1 gamma left 1 frac mathbf u cdot mathbf v c 2 right sqrt mathbf v 2 2 frac Gamma c 2 mathbf u cdot mathbf v 2 2 gamma mathbf u cdot mathbf v frac Gamma 2 c 4 u 2 mathbf u cdot mathbf v 2 2 frac Gamma gamma c 2 u 2 mathbf u cdot mathbf v gamma 2 u 2 nbsp u c 1 g 1 u c c 2 c 2 1 g 2 u 2 c 2 2 g u c 1 G u 2 c 2 G c 2 u c 2 G u 2 c 2 displaystyle mathbf u mathbf c frac 1 gamma left 1 frac mathbf u cdot mathbf c c 2 right sqrt c 2 left 1 gamma 2 frac u 2 c 2 right 2 gamma mathbf u cdot mathbf c left 1 Gamma frac u 2 c 2 right frac Gamma c 2 mathbf u cdot mathbf c left 2 Gamma frac u 2 c 2 right nbsp 1 g 2 u 2 c 2 g 2 2 G u 2 c 2 1 g 1 g g 2 g 2 g 2 G 1 G u 2 c 2 g g g 1 u c c 2 c 2 2 u c 1 c 2 u c 2 displaystyle left 1 gamma 2 frac u 2 c 2 gamma 2 quad 2 Gamma frac u 2 c 2 1 gamma frac 1 gamma gamma 2 gamma 2 frac gamma 2 Gamma quad 1 Gamma frac u 2 c 2 gamma right frac gamma gamma left 1 frac mathbf u cdot mathbf c c 2 right sqrt c 2 2 mathbf u cdot mathbf c frac 1 c 2 mathbf u cdot mathbf c 2 nbsp c 1 2 u c c 2 u c c 4 1 u c c 2 c displaystyle c frac sqrt 1 2 frac mathbf u cdot mathbf c c 2 frac mathbf u cdot mathbf c c 4 1 frac mathbf u cdot mathbf c c 2 c nbsp sho j treba bulo dovesti Nastupna aksioma princip prichinnosti 4 yakij nakladaye umovi na maksimalnist shvidkosti rozpovsyudzhennya vzayemodiyi Nehaj podiya sho vidbulasya v t x 2 displaystyle x 2 nbsp ye naslidkom podiyi sho vidbulasya v t x 1 displaystyle x 1 nbsp shvidkist rozpovsyudzhennya vzayemodiyi danoyi podiyi ye U displaystyle U nbsp Todi v ISV K x 2 x 1 U t 2 t 1 x 2 x 1 t 2 t 1 U 17 displaystyle frac x 2 x 1 U t 2 t 1 Rightarrow x 2 x 1 t 2 t 1 U qquad 17 nbsp Yaksho zh zapisati dlya ISV K 9 displaystyle 9 nbsp to z urahuvannyam principa prichinnosti mozhna bude otrimati t 2 t 1 t 2 t 1 u c 2 x 2 x 1 1 u 2 c 2 17 t 2 t 1 1 u U c 2 1 u 2 c 2 0 1 u U c 2 0 U c displaystyle t 2 t 1 frac t 2 t 1 frac u c 2 x 2 x 1 sqrt 1 frac u 2 c 2 17 frac t 2 t 1 1 frac uU c 2 sqrt 1 frac u 2 c 2 geqslant 0 Rightarrow 1 frac uU c 2 geqslant 0 Rightarrow U leqslant c nbsp z chogo vidno sho shvidkist c displaystyle c nbsp ye maksimalnoyu shvidkistyu rozpovsyudzhennya vzayemodiyi u lt c displaystyle u lt c nbsp oskilki inakshe peretvorennya Lorenca buli b kompleksnimi Zalishayetsya lishe pripustiti sho velichina c displaystyle c nbsp chiselno rivna shvidkosti svitla u vakuumi pidstavi vibrati za cyu konstantu same shvidkist svitla u vakuumi buli otrimani v osnovnomu istorichno cherez teoriyu Maksvella ta doslidi Majkelsona Morli Yaksho zh dodati princip absolyutnosti odnochasnosti podij vidnosno riznih ISV mozhna bude otrimati klasichni peretvorennya Galileya D t 0 D t D t D x u c 2 1 u 2 c 2 D t 0 c x x u t displaystyle Delta t 0 Rightarrow Delta t frac Delta t frac Delta xu c 2 sqrt 1 frac u 2 c 2 Delta t 0 Rightarrow c infty Rightarrow x x ut nbsp a otzhe yaksho klasichna mehanika sformulovana bez protirich to relyativistska takozh oskilki voni bazuyutsya na odnakovomu nabori aksiom Peretvorennya Lorenca dlya sili Redaguvati Peretvorennya Lorenca dlya sili U ramkah STV zagalnij viraz dlya vektora sili dayetsya pohidnoyu vid vektora impulsu F d p d t d d t m v 1 v 2 c 2 m d v d t 1 v 2 c 2 m v d v d t d d v 1 v 2 c 2 1 v 2 c 2 m d v d t 1 v 2 c 2 m v v d v d t c 2 1 v 2 c 2 3 2 18 displaystyle mathbf F frac d mathbf p dt frac d dt frac m mathbf v sqrt 1 frac v 2 c 2 frac m frac d mathbf v dt sqrt 1 frac v 2 c 2 m mathbf v frac d mathbf v dt frac d d mathbf v sqrt 1 frac v 2 c 2 1 frac v 2 c 2 frac m frac d mathbf v dt sqrt 1 frac v 2 c 2 frac m mathbf v mathbf v cdot frac d mathbf v dt c 2 1 frac v 2 c 2 frac 3 2 qquad 18 nbsp Dlya velichini d v d t displaystyle frac d mathbf v dt nbsp ne vvoditsya niyakogo poznachennya oskilki u relyativistskij fizici yak vidno iz 18 displaystyle 18 nbsp vona ne mozhe buti nazvanoyu priskorennyam vihodyachi iz viznachennya sili yak F m a displaystyle mathbf F m mathbf a nbsp Sila yak 3 vektor ne ye invariantnoyu u ramkah STV Dlya viznachennya zakonu zv yazku vektoriv sili vidnosno sposterigachiv u ISV K K displaystyle K K nbsp dlya sili vektor yakoyi spivnapryamlenij z vektorom vidnosnoyi shvidkosti ISV yakij zadaye vis O x displaystyle O x nbsp treba poslidovno znajti diferenciali d E d E d p x u 1 u 2 c 2 d p x d p x d E u c 2 1 u 2 c 2 19 displaystyle dE frac dE dp x u sqrt 1 frac u 2 c 2 qquad dp x frac dp x frac dEu c 2 sqrt 1 frac u 2 c 2 qquad 19 nbsp Dlya pochatku pohidna vid energiyi po chasu rivna d E d t F v displaystyle frac dE dt mathbf F cdot mathbf v nbsp Vivedennya d E d t d v d t d d v m c 2 1 v 2 c 2 d v d t m v 1 v 2 c 2 3 2 d v d t m v m v v 2 c 2 m v v 2 c 2 1 v 2 c 2 3 2 m v a 1 v 2 c 2 m v 2 v a c 2 1 v 2 c 2 3 2 F v displaystyle frac dE dt frac d mathbf v dt frac d d mathbf v frac mc 2 sqrt 1 frac v 2 c 2 frac d mathbf v dt frac m mathbf v 1 frac v 2 c 2 frac 3 2 frac d mathbf v dt frac m mathbf v m mathbf v frac v 2 c 2 m mathbf v frac v 2 c 2 1 frac v 2 c 2 frac 3 2 frac m mathbf v cdot mathbf a sqrt 1 frac v 2 c 2 frac mv 2 mathbf v cdot mathbf a c 2 1 frac v 2 c 2 frac 3 2 mathbf F cdot mathbf v nbsp Dali treba znajti vlasnij chas chastinki invariantnij vidnosno bud yakoyi ISV V principi viraz dlya nogo uzhe buv otrimanij pri analizi intervalu prichinno pov yazanih podij ale docilno bude otrimati inshe vivedennya Dlya cogo mozhna zapisati peretvorennya Lorenca dlya chasu 1 v 2 c 2 d t 1 v 2 c 2 d t 20 displaystyle sqrt 1 frac v 2 c 2 dt sqrt 1 frac v 2 c 2 dt qquad 20 nbsp Vivedennya