www.wikidata.uk-ua.nina.az
Fo rmula Nyuto na Lyajbnica dlya obchislennya viznachenogo integralu ye uzagalnennyam metodu Arhimeda dlya obchislennya plosh i poverhon ploskih krivolinijnih poverhon ob yemiv til dovzhin krivih ta inshih zadach Nehaj funkciya f x displaystyle f x neperervna na vidrizku a b i vidoma yiyi pervisna F x displaystyle F x todi viznachenij integral vid funkciyi f x displaystyle f x mozhna obchisliti za formuloyu a b f x d x F b F a displaystyle int limits a b f x dx F b F a Cya formula nazivayetsya formuloyu Nyutona Lyajbnica Inodi yiyi nazivayut osnovnoyu formuloyu integralnogo chislennya Dlya skorochennya zapisu chasto zastosovuyetsya poznachennya a b f x d x F x a b F x a b displaystyle int limits a b f x dx Bigl F x Bigr a b Bigl F x Bigr a b Ale v bagatoh vipadkah pervisna funkciya ne mozhe buti znajdena za dopomogoyu elementarnih zasobiv abo ye zanadto skladnoyu sho robit nemozhlivim obchislennya viznachenogo integrala za ciyeyu formuloyu V takih vipadkah koristuyutsya chiselnimim metodami obchislennya viznachenih integraliv Zmist 1 Formalni tverdzhennya 1 1 Persha chastina 1 2 Naslidok 1 3 Druga chastina 2 Dovedennya pershoyi chastini 3 Dovedennya naslidku 4 Dovedennya drugoyi chastini 5 Prikladi 6 Div takozh 7 Primitki 8 Dzherela 9 PosilannyaFormalni tverdzhennya RedaguvatiIsnuye dvi chastini teoremi Inakshe kazhuchi persha chastina operuye z pohidnimi pervisnih todi yak druga chastina maye spravu zi zv yazkom mizh pervisnoyu i viznachenim integralom Persha chastina Redaguvati Cya chastina inodi zgaduyetsya yak persha fundamentalna teorema integralnogo chislennya 1 Nehaj f bude neperervnoyu dijsno znachimoyu funkciyeyu na zakritomu promizhku a b Nehaj F bude funkciyeyu viznachenoyu dlya vsih x u a b cherez F x a x f t d t displaystyle F x int a x f t dt nbsp Todi F ye neperervnoyu na a b diferencijovnoyu na vidkritomu promizhku a b i F x f x displaystyle F x f x nbsp dlya vsih x z a b Naslidok Redaguvati Fundamentalnu teoremu chasto vikoristovuyut dlya obchislennya viznachenogo integralu funkciyi f dlya yakoyi vidoma pervisna F Konkretno yaksho f ye dijsno znachnoyu neperervnoyu funkciyu na a b i F yiyi pervisna f u a b todi a b f t d t F b F a displaystyle int a b f t dt F b F a nbsp Cej naslidok pripuskaye neperervnist na vsomu promizhku Cej vislid zlegka posilyuyetsya nastupnoyu chastinoyu teoremi Druga chastina Redaguvati nbsp Formula Nyutona Lejbnica animaciya Cya chastina inodi zgaduyetsya yak druga fundamentalna teorema integralnogo chislennya 2 abo formula Nyutona Lejbnica angl Newton Leibniz axiom Nehaj f i F budut dijsno znachnimi funkciyami viznachenimi na zakritomu promizhku a b taki sho pohidna F ye f Tobto f i F ce funkciyi taki sho dlya vsih x z a b F x f x displaystyle F x f x nbsp Yaksho f ye integrovnoyu za Rimanom na a b todi a b f x d x F b F a displaystyle int a b f x dx F b F a nbsp Druga chastina ye pochasti silnishoyu vid Naslidku bo vona ne vimagaye neperervnosti f Koli isnuye pervisna F todi isnuye neskinchenno bagato pervisnih dlya f otrimuvanih dodavannyam do F dovilnoyi staloyi Takozh z pershoyi chastini teoremi pervisna isnuye zavzhdi koli f neperervna Dovedennya pershoyi chastini RedaguvatiDlya zadanoyi f t viznachimo funkciyu F x yak F x a x f t d t displaystyle F x int a x f t dt nbsp Dlya dvoh dovilnih chisel x1 i x1 Dx z a b mayemo F x 1 a x 1 f t d t displaystyle F x 1 int a x 1 f t dt nbsp i F x 1 D x a x 1 D x f t d t displaystyle F x 1 Delta x int a x 1 Delta x f t dt nbsp Vidnimannyam otrimuyemo F x 1 D x F x 1 a x 1 D x f t d t a x 1 f t d t 1 displaystyle F x 1 Delta x F x 1 int a x 1 Delta x f t dt int a x 1 f t dt qquad 1 nbsp Mozhna pokazati sho a x 1 f t d t x 1 x 1 D x f t d t a x 1 D x f t d t displaystyle int a x 1 f t dt int x 1 x 1 Delta x f t dt int a x 1 Delta x f t dt nbsp Suma plosh dvoh sumizhnih regioniv dorivnyuye ploshi dvoh regioniv ob yednanih Otzhe a x 1 D x f t d t a x 1 f t d t x 1 x 1 D x f t d t displaystyle int a x 1 Delta x f t dt int a x 1 f t dt int x 1 x 1 Delta x f t dt nbsp Pidstavlyayemo poperednye v 1 sho daye F x 1 D x F x 1 x 1 x 1 D x f t d t 2 displaystyle F x 1 Delta x F x 1 int x 1 x 1 Delta x f t dt qquad 2 nbsp Zgidno z teoremoyu Lagranzha dlya integruvannya isnuye dijsne chislo c D x displaystyle c Delta x nbsp z x1 x1 Dx take sho x 1 x 1 D x f t d t f c D x D x displaystyle int x 1 x 1 Delta x f t dt f left c Delta x right Delta x nbsp Dlya sproshennya zapisu mi prodovzhuvatimemo pisati c zamist c D x displaystyle c Delta x nbsp ale chitach maye usvidomlyuvati sho c zalezhit vid D x displaystyle Delta x nbsp Pidstavlyayuchi poperednye u 2 otrimuyemo F x 1 D x F x 1 f c D x displaystyle F x 1 Delta x F x 1 f c Delta x nbsp Dilennya na Dx daye F x 1 D x F x 1 D x f c displaystyle frac F x 1 Delta x F x 1 Delta x f c nbsp Viraz livoruch vid znaku rivnosti vidnoshennya riznic Nyutona dlya F u x1 Perejdemo do granic pri Dx 0 z oboh bokiv rivnyannya lim D x 0 F x 1 D x F x 1 D x lim D x 0 f c displaystyle lim Delta x to 0 frac F x 1 Delta x F x 1 Delta x lim Delta x to 0 f c nbsp Viraz livoruch ye viznachennyam pohidnoyi vid F u x1 F x 1 lim D x 0 f c 3 displaystyle F x 1 lim Delta x to 0 f c qquad 3 nbsp Dlya viznachennya drugoyi granici vikoristayemo stisknu teoremu Chislo c lezhit u promizhku x1 x1 Dx otzhe x1 c x1 Dx Takozh lim D x 0 x 1 x 1 displaystyle lim Delta x to 0 x 1 x 1 nbsp and lim D x 0 x 1 D x x 1 displaystyle lim Delta x to 0 x 1 Delta x x 1 nbsp Tomu vidpovidno do stisknoyi teoremi lim D x 0 c x 1 displaystyle lim Delta x to 0 c x 1 nbsp Pidstavlyayemo v 3 i otrimuyemo F x 1 lim c x 1 f c displaystyle F x 1 lim c to x 1 f c nbsp Funkciya f ye neperervnoyu v c otzhe granicyu mozhna perenesti v seredinu funkciyi Otzhe mi mayemo F x 1 f x 1 displaystyle F x 1 f x 1 nbsp Sho zavershuye dovedennya Leithold et al 1996 stroge dovedennya vi mozhete znajti na http www imomath com index php options 438 Arhivovano 22 lyutogo 2014 u Wayback Machine Dovedennya naslidku RedaguvatiPripustimo F pervisna f yaksho f neperervna na a b Nehaj G x a x f t d t displaystyle G x int a x f t dt nbsp Z pershoyi chastini teoremi mi znayemo G takozh pervisna f Z teoremi Lagranzha viplivaye sho isnuye take chislo c sho G x F x c dlya vsih x z a b Poklavshi x a mayemo F a c G a a a f t d t 0 displaystyle F a c G a int a a f t dt 0 nbsp sho znachit c F a Inakshe kazhuchi G x F x F a i otzhe a b f x d x G b F b F a displaystyle int a b f x dx G b F b F a nbsp Dovedennya drugoyi chastini RedaguvatiDovedennya cherez sumi Rimana Nehaj f integrovna za Rimanom na vidrizku a b i nehaj f maye pervisnu F na a b Pochnemo z velichini F b F a Nehaj isnuyut chisla x1 xn taki sho a x 0 lt x 1 lt x 2 lt lt x n 1 lt x n b displaystyle a x 0 lt x 1 lt x 2 lt cdots lt x n 1 lt x n b nbsp Z cogo sliduye F b F a F x n F x 0 displaystyle F b F a F x n F x 0 nbsp Teper dodamo kozhne F xi razom iz zvorotnim do nogo shodo dodavannya otzhe vislidna velichina dorivnyuye F b F a F x n F x n 1 F x n 1 F x 1 F x 1 F x 0 F x n F x n 1 F x n 1 F x 1 F x 1 F x 0 displaystyle begin aligned F b F a amp F x n F x n 1 F x n 1 cdots F x 1 F x 1 F x 0 amp F x n F x n 1 F x n 1 cdots F x 1 F x 1 F x 0 end aligned nbsp Poperednye mozhna zapisati yak taku sumu F b F a i 1 n F x i F x i 1 1 displaystyle F b F a sum i 1 n F x i F x i 1 qquad 1 nbsp Dali vikoristayemo teoremu Lagranzha Yaka stverdzhuye korotko Nehaj F ye neperervnoyu na vidrizku a b i diferencijovnoyu na intervali a b Todi isnuye deyake c z a b take sho F c F b F a b a displaystyle F c frac F b F a b a nbsp Z cogo viplivaye sho F c b a F b F a displaystyle F c b a F b F a nbsp Funkciya F diferencijovna na a b otzhe vona diferencijovna i neperervna na kozhnomu z vidrizkiv xi 1 xi Zgidno z teoremoyu Lagranzha F x i F x i 1 F c i x i x i 1 displaystyle F x i F x i 1 F c i x i x i 1 nbsp Pidstavlyayuchi poperednye v 1 otrimuyemo F b F a i 1 n F c i x i x i 1 displaystyle F b F a sum i 1 n F c i x i x i 1 nbsp Pripushennya oznachaye F c i f c i displaystyle F c i f c i nbsp Takozh x i x i 1 displaystyle x i x i 1 nbsp mozhe buti virazheno yak D x displaystyle Delta x nbsp vidtinku i displaystyle i nbsp F b F a i 1 n f c i D x i 2 displaystyle F b F a sum i 1 n f c i Delta x i qquad 2 nbsp nbsp Zbizhna poslidovnist sum Rimana Chislo nagori livoruch ye povnoyu plosheyu golubih pryamokutnikiv Voni zbigayutsya do integralu funkciyiMi opisuyemo ploshu pryamokutnika cherez dobutok shirini i visoti i dodayemo ploshi Kozhen pryamokutnik znov teorema Lagranzha ye nablizhennyam sekciyi krivoyi de vin namalovanij Takozh D x i displaystyle Delta x i nbsp ne obov yazkovo maye buti odnakovim dlya vsih i inakshe kazhuchi shirina pryamokutnikiv mozhe riznitisya Sho nam potribno zrobiti priblizno zadati krivu cherez n pryamokutnikiv Teper u miru togo yak rozmir kozhnogo vidtinku zmenshuyetsya a n zbilshuyetsya mi nablizhayemosya do spravzhnogo znachennya integralu krivoyi Z perehodom do granici de rozmir rozbittya najbilshe D x displaystyle Delta x nbsp pryamuye do nulya i vidpovidno kilkist vidtinkiv do neskinchennosti mi dosyagayemo integralu Rimana Granicya isnuye bo za pripushennyam f integrovna Otzhe mi perehodimo do granici z oboh bokiv u 2 Mayemo lim D x i 0 F b F a lim D x i 0 i 1 n f c i D x i displaystyle lim Delta x i to 0 F b F a lim Delta x i to 0 sum i 1 n f c i Delta x i nbsp Ani F b ni F a ne ye zalezhnimi vid D x i displaystyle Delta x i nbsp tomu granicya zliva zalishayetsya F b F a F b F a lim D x i 0 i 1 n f c i D x i displaystyle F b F a lim Delta x i to 0 sum i 1 n f c i Delta x i nbsp Viraz pravoruch viznachaye integral f vid a do b Otzhe mi otrimuyemo F b F a a b f x d x displaystyle F b F a int a b f x dx nbsp sho j zavershuye dovedennya Ce viglyadaye majzhe tak nache persha chastina bezposeredno viplivaye z drugoyi Tobto pripustimo G ye pervisnoyu dlya f Todi zgidno z drugoyu chastinoyu teoremi G x G a a x f t d t displaystyle G x G a int a x f t dt nbsp Teper pripustimo F x a x f t d t G x G a displaystyle F x int a x f t dt G x G a nbsp Todi F maye taku samu pohidnu yak i G zvidsi F f Odnak cej dovid pracyuye lishe yaksho mi znayemo sho f maye pervisnu a mi znayemo sho neperervni funkciyi mayut pervisnu lishe zavdyaki pershij chastini fundamentalnoyi teoremi 3 Napriklad yaksho f x e x2 todi f maye pervisnu a same G x 0 x f t d t displaystyle G x int 0 x f t dt nbsp i ne isnuye prostishogo virazu dlya ciyeyi funkciyi Same cherez ne treba sprijmati drugu chastinu yak viznachennya integrala I spravdi isnuye bagato funkcij yaki integrovni ale na mayut pervisnoyi yaku mozhna zapisati u viglyadi elementarnih funkcij I navpaki bagato funkcij sho mayut pervisnu neintegrovni za Rimanom divis Funkciya Volterra Prikladi RedaguvatiZadlya prikladu obchislimo take 2 5 x 2 d x displaystyle int 2 5 x 2 dx nbsp Tut f x x 2 displaystyle f x x 2 nbsp i mi mozhemo vikoristati F x x 3 3 displaystyle F x frac x 3 3 nbsp yak pervisnu Zvidsi 2 5 x 2 d x F 5 F 2 5 3 3 2 3 3 125 3 8 3 117 3 39 displaystyle int 2 5 x 2 dx F 5 F 2 frac 5 3 3 frac 2 3 3 frac 125 3 frac 8 3 frac 117 3 39 nbsp Abo zagalnishe obchislimo d d x 0 x t 3 d t displaystyle frac d dx int 0 x t 3 dt nbsp Tut f t t 3 displaystyle f t t 3 nbsp i mozhna vikoristati F t t 4 4 displaystyle F t frac t 4 4 nbsp yak pervisnu Otzhe d d x 0 x t 3 d t d d x F x d d x F 0 d d x x 4 4 x 3 displaystyle frac d dx int 0 x t 3 dt frac d dx F x frac d dx F 0 frac d dx frac x 4 4 x 3 nbsp Abo totozhno d d x 0 x t 3 d t f x d x d x f 0 d 0 d x x 3 displaystyle frac d dx int 0 x t 3 dt f x frac dx dx f 0 frac d0 dx x 3 nbsp Div takozh RedaguvatiIntegralne chislennyaPrimitki Redaguvati Apostol 1967 5 1 Apostol 1967 5 3 Spivak Michael 1980 Calculus vid 2nd Houston Texas Publish or Perish Inc Dzherela RedaguvatiApostol Tom M 1967 Integralne chislennya Tom 1 Integralne chislennya funkcij odniyeyi zminnoyi zi vstupom do linijnoyi algebri vid druge Nyu Jork John Wiley amp Sons ISBN 978 0 471 00005 1 angl Fihtengolc G M Kurs differencialnogo i integralnogo ischisleniya Moskva Nauka 1964 T 2 800 s ros Posilannya RedaguvatiFormula Nyutona Lejbnica Visha matematika v prikladah i zadachah Klepko V Yu Golec V L 2 ge vidannya K Centr uchbovoyi literaturi 2009 S 412 594 s nbsp Ce nezavershena stattya z matematiki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Otrimano z https uk wikipedia org w index php title Formula Nyutona Lyajbnica amp oldid 40451978