www.wikidata.uk-ua.nina.az
V teoriyi grup teoremi Silova stverdzhuyut pro isnuvannya pidgrup pevnogo poryadku viznachayut yih vlastivosti Teoremi dovedeni norvezkim matematikom Silovom v 1872 r Zmist 1 Viznachennya 2 Tverdzhennya teorem 3 Dovedennya 4 Div takozh 5 DzherelaViznachennya RedaguvatiNehaj G displaystyle G nbsp skinchenna grupa a p displaystyle p nbsp proste chislo sho dilit poryadok G displaystyle G nbsp Pidgrupi poryadku p t displaystyle p t nbsp nazivayutsya p displaystyle p nbsp pidgrupami Nehaj mayemo G p n s displaystyle G p n s nbsp de s displaystyle s nbsp ne dilitsya na p displaystyle p nbsp Todi p displaystyle p nbsp pidgrupoyu Silova nazivayetsya pidgrupa G displaystyle G nbsp sho maye poryadok p n displaystyle p n nbsp Tverdzhennya teorem RedaguvatiNehaj G displaystyle G nbsp skinchenna grupa Todi p displaystyle p nbsp pidgrupa Silova isnuye Bud yaka p displaystyle p nbsp pidgrupa mistitsya v deyakij p displaystyle p nbsp pidgrupi Silova Vsi p displaystyle p nbsp pidgrupi Silova spryazheni tobto kozhnu mozhna predstaviti v vidi g P g 1 displaystyle gPg 1 nbsp de g displaystyle g nbsp element grupi a P displaystyle P nbsp pidgrupa Silova iz teoremi 1 Kilkist p displaystyle p nbsp pidgrup Silova rivne odinici za modulem p displaystyle p nbsp N p 1 mod p displaystyle N p equiv 1 pmod p nbsp i dilit poryadok G displaystyle G nbsp Dovedennya Redaguvati1 Spershu dovedemo sho p k m p k m mod p displaystyle p k m choose p k equiv m pmod p nbsp Spravdi zdijsnyuyuchi obchislennya za modulem p otrimuyemo X 1 p r X p r 1 p r X p r 1 mod p displaystyle X 1 p r equiv X p r 1 p r X p r 1 pmod p nbsp Pidnisshi obi chastini do stepenya m mayemo X 1 p r m X p r 1 m mod p displaystyle X 1 p r m equiv X p r 1 m pmod p nbsp V livij chastini koeficiyent bilya X p r displaystyle X p r nbsp rivnij p k m p k displaystyle p k m choose p k nbsp a v pravij m sho j dovodit tverdzhennya Yak naslidok mayemo sho p k m p k displaystyle p k m choose p k nbsp ne dilitsya na p yaksho na p ne dilitsya chislo m Nehaj G pkm i W poznachaye mnozhinu pidmnozhin G potuzhnosti pk Todi mayemo W p k m p k displaystyle Omega p k m choose p k mathrm nbsp Rozglyanemo diyu G na mnozhini W sho polyagaye u livomu mnozhenni Todi W o o W G o displaystyle Omega sum o o in Omega Go mathrm nbsp de suma beretsya po vsih orbitah mnozhini W Zrozumilo sho kilkist elementiv prinajmni odniyeyi z cih orbit ne dilitsya na p oskilki na p ne dilitsya kilkist elementiv mnozhini W sho viplivaye z dovedenogo vishe Nehaj S odin z elementiv ciyeyi orbiti i P jogo stabilizator Todi dlya velichini orbiti mayemo G P G P p r m P displaystyle G P frac G P frac p r m P nbsp Dlya togo shob ce chislo ne dililosya na p neobhidno p r P displaystyle p r P nbsp i yak naslidok pr P Z inshoyi storoni dlya bud yakogo x S displaystyle x in S nbsp mayemo vidobrazhennya g gx in yektivnim vidobrazhennyam P v S dane vidobrazhennya ye vidobrazhennyam v S oskilki P ye stabilizatorom S Vidpovidno P pr i poyednuyuchi dvi nerivnosti oderzhimo P pr 2 Nehaj H dovilna p pidgrupa G Rozglyanem yiyi diyu na mnozhini pravih klasiv sumizhnosti G P livimi zsuvami de P p pidgrupa Silova Kilkist elementiv dovilnoyi netrivialnoyi orbiti povinno dilitisya na p Ale G P ne dilitsya na p vidpovidno u diyi ye neruhoma tochka gP Tomu h H h g a g a a a P displaystyle forall h in H quad hga ga quad a a in P nbsp a znachit h g a a 1 g 1 g P g 1 displaystyle h ga a 1 g 1 in gPg 1 nbsp tobto H ye pidgrupoyu deyakoyi p pidgrupi Silova Yaksho zh H sama ye p pidgrupoyu Silova to vona spryazhena z P 3 Kilkist p pidgrup Silova rivna G NG P i vidpovidno dilit G Z poperednogo mayemo sho mnozhina p pidgrup Silova rivna X gPg 1 Rozglyanemo diyu P na X spryazhennyami Nehaj H iz X deyaka neruhoma tochka Todi P i H nalezhat normalizatoru pidgrupi H i pri comu spryazheni v NG H yak p pidgrupi Silova Ale H normalna v svoyemu normalizatori tomu H P i yedinoyu neruhomoyu tochkoyu diyi ye P Oskilki poryadki vsih netrivialnih orbit kratni p oderzhuyemo N p 1 mod p displaystyle N p equiv 1 pmod p nbsp Div takozh RedaguvatiP grupaDzherela RedaguvatiVinberg E B Kurs algebri 4 e izd Moskva MCNMO 2011 592 s ISBN 978 5 94057 685 3 ros Kurosh A G Teoriya grupp 3 e izd Moskva Nauka 1967 648 s ISBN 5 8114 0616 9 ros A I Kostrikin Vvedenie v algebru III chast M Fizmatlit 2001 Dzhozef Rotman en An Introduction to the Theory of Groups 4th Springer Graduate Texts in Mathematics 1994 532 s ISBN 978 0387942858 angl Otrimano z https uk wikipedia org w index php title Teoremi Silova amp oldid 36918178