www.wikidata.uk-ua.nina.az
Rivnya nnya Ke plera opisuye ruh tila po eliptichnij orbiti v zadachi dvoh til i maye viglyad Animaciya sho ilyustruye spravzhnyu anomaliyu ekscentrichnu anomaliyu serednyu anomaliyu i rozv yazok rivnyannya Keplera u pravomu verhnomu kuti ekscentrisitet 0 6 E e sin E M displaystyle E e sin E M de E displaystyle E ekscentrichna anomaliya e displaystyle e ekscentrisitet orbiti a M displaystyle M serednya anomaliya Vpershe ce rivnyannya otrimav astronom Jogann Kepler u 1619 roci Vidigraye znachnu rol u nebesnij mehanici Zmist 1 Varianti rivnyannya Keplera 2 Zavdannya sho privodit do rivnyannya Keplera 2 1 Eliptichna orbita 2 2 Giperbolichna orbita 2 3 Parabolichna orbita 2 4 Radialna orbita 3 Rozv yazok rivnyannya Keplera 3 1 Nablizheni metodi 4 Primitki 5 LiteraturaVarianti rivnyannya Keplera RedaguvatiRivnyannya Keplera v klasichnij formi opisuye ruh lishe po eliptichnih orbitah tobto pri 0 e lt 1 displaystyle 0 leq e lt 1 nbsp Ruh po giperbolichnih orbitah e gt 1 displaystyle e gt 1 nbsp pidkoryayetsya giperbolichnomu rivnyannya Keplera shozhomu za formoyu z klasichnim Ruh po pryamij liniyi e 1 displaystyle e 1 nbsp opisuye radialne rivnyannya Keplera Nareshti dlya opisu ruhu po parabolichnij orbiti e 1 displaystyle e 1 nbsp vikoristovuyut rivnyannya Barkera Pri e lt 0 displaystyle e lt 0 nbsp orbit ne isnuye Zavdannya sho privodit do rivnyannya Keplera RedaguvatiRozglyanemo ruh tila po orbiti v poli inshogo tila Znajdemo zalezhnist polozhennya tila na orbiti vid chasu Z II zakonu Keplera viplivaye sho r 2 d ϑ d t c o n s t m a 1 e 2 displaystyle r 2 frac d vartheta dt rm const sqrt mu a left 1 e 2 right nbsp Tut r displaystyle r nbsp vidstan vid tila do gravituyuchogo centra ϑ displaystyle vartheta nbsp istinna anomaliya kut mizh napryamkami na pericentr orbiti j na tilo m G M 0 displaystyle mu GM 0 nbsp dobutok gravitacijnoyi staloyi na masu gravituyuchogo tila a displaystyle a nbsp velika pivvis orbiti Zvidsi mozhna otrimati zalezhnist chasu ruhu po orbiti vid istinnoyi anomaliyi t t 0 1 m a 1 e 2 0 ϑ r 2 d ϑ displaystyle t t 0 frac 1 sqrt mu a left 1 e 2 right int limits 0 vartheta r 2 d vartheta nbsp Tut t 0 displaystyle t 0 nbsp chas prohodzhennya cherez pericentr Podalshe rozv yazuvannya zadachi zalezhit vid tipu orbiti po yakij ruhayetsya tilo Eliptichna orbita Redaguvati Rivnyannya elipsa v polyarnih koordinatah maye viglyad r a 1 e 2 1 e cos ϑ displaystyle r frac a 1 e 2 1 e cos vartheta nbsp Todi rivnyannya chasu nabuvaye viglyadu t t 0 a 1 e 2 3 2 m 0 ϑ d ϑ 1 e cos ϑ 2 displaystyle t t 0 frac left a left 1 e 2 right right 3 2 sqrt mu int limits 0 vartheta frac d vartheta 1 e cos vartheta 2 nbsp Dlya togo shob vzyati integral vvodyat taku pidstanovku tg ϑ 2 1 e 1 e tg E 2 displaystyle operatorname tg frac vartheta 2 sqrt frac 1 e 1 e cdot operatorname tg frac E 2 nbsp Velichina E nazivayetsya ekscentrichnoyu anomaliyeyu Zavdyaki takij pidstanovci integral legko beretsya Vihodit take rivnyannya t t 0 a 3 m E e sin E displaystyle t t 0 sqrt frac a 3 mu left E e sin E right nbsp Velichina m a 3 displaystyle sqrt frac mu a 3 nbsp ye serednoyu kutovoyu shvidkistyu ruhu tila po orbiti V nebesnij mehanici dlya ciyeyi velichini vikoristovuyetsya termin serednij ruh Dobutok serednogo ruhu na chas nazivayetsya serednoyu anomaliyeyu M Cya velichina yavlyaye soboyu kut na yakij povernuvsya b radius vektor tila yakbi vono ruhalosya po kolovij orbiti z radiusom rivnim velikij pivosi orbiti tila Takim chinom otrimuyemo rivnyannya Keplera dlya eliptichnogo ruhu E e sin E M displaystyle E e sin E M nbsp Giperbolichna orbita Redaguvati Rivnyannya giperboli v polyarnih koordinatah maye takij samij viglyad yak i rivnyannya elipsa Otzhe integral vihodit takij samij na viglyad Odnak vikoristovuvati ekscentrichnu anomaliyu v comu vipadku ne mozhna Skoristayemosya parametrichnim podannyam giperboli x a c h H displaystyle x a mathrm ch H nbsp y a e 2 1 s h H displaystyle y a sqrt e 2 1 mathrm sh H nbsp Todi rivnyannya giperboli nabuvaye viglyadu r a e c h H 1 displaystyle r a left e mathrm ch H 1 right nbsp a zv yazok mizh ϑ displaystyle vartheta nbsp i H displaystyle H nbsp t g ϑ 2 e 1 e 1 t h H 2 displaystyle mathrm tg frac vartheta 2 sqrt frac e 1 e 1 mathrm th frac H 2 nbsp Zavdyaki takij pidstanovci integral nabuvaye takoyi zh formi sho j u vipadku z eliptichnoyu orbitoyu Pislya provedennya peretvoren otrimuyemo giperbolichne rivnyannya Keplera M e s h H H displaystyle M e mathrm sh H H nbsp Velichinu H displaystyle H nbsp nazivayut giperbolichnoyu ekscentrichnoyu anomaliyeyu Oskilki s h H i sin i H displaystyle mathrm sh H i sin iH nbsp to ostannye rivnyannya mozhna peretvoriti takim chinom M e i sin i H H i i H e sin i H i E e sin E displaystyle M ei sin iH H i left iH e sin iH right i left E e sin E right nbsp Zvidsi vidno sho E i H displaystyle E iH nbsp Parabolichna orbita Redaguvati Rivnyannya paraboli v polyarnih koordinatah maye viglyadr 2 r p 1 cos ϑ displaystyle r frac 2 r pi 1 cos vartheta nbsp de r p displaystyle r pi nbsp vidstan do pericentra Drugij zakon Keplera dlya vipadku ruhu po parabolichnij trayektoriyir 2 d ϑ d t c o n s t 2 m r p displaystyle r 2 frac d vartheta dt rm const sqrt 2 mu r pi nbsp Zvidki oderzhuyemo integral sho viznachaye chas ruhut t 0 2 r p 2 r p m 0 ϑ d ϑ 1 cos ϑ 2 displaystyle t t 0 2 r pi sqrt frac 2 r pi mu int limits 0 vartheta frac d vartheta 1 cos vartheta 2 nbsp Vvodimo universalnu trigonometrichnu zaminuz t g ϑ 2 ϑ 2 a r c t g z d ϑ 2 d z 1 z 2 cos ϑ 1 z 2 1 z 2 displaystyle z rm tg frac vartheta 2 quad vartheta 2 rm arctg z quad d vartheta frac 2 dz 1 z 2 quad cos vartheta frac 1 z 2 1 z 2 nbsp i peretvoryuyemo integralt t 0 4 r p 2 r p m 0 t g ϑ 2 d z 1 z 2 1 1 z 2 1 z 2 2 r p 2 r p m 0 t g ϑ 2 1 z 2 d z r p 2 r p m z z 3 3 0 t g ϑ 2 displaystyle t t 0 4 r pi sqrt frac 2 r pi mu int limits 0 rm tg frac vartheta 2 frac cfrac dz 1 z 2 left 1 cfrac 1 z 2 1 z 2 right 2 r pi sqrt frac 2 r pi mu int limits 0 rm tg frac vartheta 2 1 z 2 dz r pi sqrt frac 2 r pi mu left left z frac z 3 3 right right 0 rm tg frac vartheta 2 nbsp ostatochno oderzhuyemot t 0 r p 2 r p m t g ϑ 2 1 3 t g 3 ϑ 2 displaystyle t t 0 r pi sqrt frac 2 r pi mu left rm tg frac vartheta 2 frac 1 3 rm tg 3 frac vartheta 2 right nbsp Ostannye spivvidnoshennya vidome v nebesnij mehanici yak rivnyannya Barkera Radialna orbita Redaguvati Radialnoyu nazivayetsya orbita sho yavlyaye soboyu pryamu liniyu yaka prohodit cherez prityagalnij centr U comu vipadku vektor shvidkosti spryamovanij uzdovzh trayektoriyi i transversalna skladova vidsutnya 1 otzhev d r d t displaystyle v frac dr dt nbsp Zv yazok mizh polozhennyam tila na orbiti i chasom znajdemo z energetichnih mirkuvanm v 2 2 m m r c o n s t displaystyle frac m v 2 2 frac m mu r rm const nbsp v 2 2 m r h displaystyle v 2 frac 2 mu r h nbsp integral energiyi Zvidsi mayemo diferencialne rivnyannyad r d t 2 m r h displaystyle frac dr dt pm sqrt frac 2 mu r h nbsp Rozdilyayuchi zminni v comu rivnyanni prihodimo do integralu t 1 t 0 r 0 r 1 d r 2 m r h displaystyle mp left t 1 t 0 right int limits r 0 r 1 frac dr sqrt cfrac 2 mu r h nbsp sposib obchislennya yakogo viznachayetsya znakom konstanti h displaystyle h nbsp Vidilyayut tri vipadki h lt 0 displaystyle h lt 0 nbsp pryamolinijno eliptichna orbitaVidpovidaye vipadku koli povna mehanichna energiya tila vid yemna i viddalivshis na deyaku najbilshu vidstan vid prityagalnogo centra vono pochne ruhatisya u zvorotnomu napryami Ce analogichno ruhu po eliptichnij orbiti Dlya obchislennya integrala vvedemo zaminu2 m r h sin 2 u u 0 a r c s i n h r 0 2 m u 1 a r c s i n h r 1 2 m d r 4 m h sin u cos u d u displaystyle frac 2 mu r frac h sin 2 u quad u 0 rm arcsin sqrt frac h r 0 2 mu quad u 1 rm arcsin sqrt frac h r 1 2 mu quad dr frac 4 mu h sin u cos u du nbsp obchislyuyemo integral t 1 t 0 4 m h h u 0 u 1 sin 2 u d u 2 m h h u 0 u 1 1 cos 2 u d u m h h 2 u sin 2 u u 0 u 1 displaystyle mp left t 1 t 0 right frac 4 mu h sqrt h int limits u 0 u 1 sin 2 u du frac 2 mu h sqrt h int limits u 0 u 1 left 1 cos 2u right du frac mu h sqrt h left left 2 u sin 2u right right u 0 u 1 nbsp Vvazhayuchi E 2 u displaystyle E 2 u nbsp zapishemo rezultat t 1 t 0 m h h E 1 E 0 sin E 1 sin E 0 displaystyle mp left t 1 t 0 right frac mu h sqrt h left E 1 E 0 sin E 1 sin E 0 right nbsp prijnyavshi za nedosyazhnij v realnosti umovnij pericentr r 0 0 displaystyle r 0 0 nbsp i napryamok pochatkovoyi shvidkosti vid prityagalnogo centra otrimayemo tak zvane radialne rivnyannya Keplera sho zv yazuye vidstan vid prityagalnogo centra z chasom ruhut 1 t 0 m h h E sin E displaystyle t 1 t 0 frac mu h sqrt h left E sin E right nbsp de E 2 arcsin h r 2 m displaystyle E 2 arcsin sqrt frac h r 2 mu nbsp h 0 displaystyle h 0 nbsp pryamolinijno parabolichna orbitaZanedbane radialno tilo pide na neskinchennist vid prityagalnogo centra mayuchi na neskinchennosti shvidkist rivnu nulyu Vidpovidaye vipadku ruhu z parabolichnoyu shvidkistyu Najprostishij vipadok bo ne vimagaye zamini v integrali t 1 t 0 r 0 r 1 d r 2 m r 1 3 2 m r 1 r 1 r 0 r 0 displaystyle mp left t 1 t 0 right int limits r 0 r 1 frac dr sqrt cfrac 2 mu r frac 1 3 sqrt frac 2 mu left r 1 sqrt r 1 r 0 sqrt r 0 right nbsp Beruchi pochatkovi umovi pershogo vipadku otrimuyemo yavnij zakon ruhur t 3 m 2 t 1 t 0 2 3 displaystyle r t left 3 sqrt frac mu 2 left t 1 t 0 right right frac 2 3 nbsp h gt 0 displaystyle h gt 0 nbsp pryamolinijno giperbolichna orbitaVidpovidaye viddalennyu vid prityagalnogo centra na neskinchennist Na neskinchennosti tilo bude mati shvidkist v h displaystyle v infty sqrt h nbsp Vvodimo zaminu2 m r h s h 2 u u 0 a r c s h h r 0 2 m u 1 a r c s h h r 1 2 m d r 4 m h s h u c h u d u displaystyle frac 2 mu r frac h rm sh 2 u quad u 0 rm arcsh sqrt frac h r 0 2 mu quad u 1 rm arcsh sqrt frac h r 1 2 mu quad dr frac 4 mu h rm sh u rm ch u du nbsp i obchislyuyemo integral t 1 t 0 4 m h h u 0 u 1 s h 2 u d u 2 m h h u 0 u 1 c h 2 u 1 d u m h h s h 2 u 2 u u 0 u 1 displaystyle mp left t 1 t 0 right frac 4 mu h sqrt h int limits u 0 u 1 rm sh 2 u du frac 2 mu h sqrt h int limits u 0 u 1 left rm ch 2u 1 right du frac mu h sqrt h left left rm sh 2u 2 u right right u 0 u 1 nbsp Vvazhayuchi H 2 u displaystyle H 2 u nbsp otrimuyemo t 1 t 0 m h h s h H 1 s h H 0 H 1 H 0 displaystyle mp left t 1 t 0 right frac mu h sqrt h left rm sh H 1 rm sh H 0 H 1 H 0 right nbsp Vvazhayuchi pochatkovi umovi analogichnimi pershomu vipadku mayemo giperbolichne radialne rivnyannya Keplerat 1 t 0 m h h s h H H displaystyle t 1 t 0 frac mu h sqrt h left rm sh H H right nbsp de H 2 a r c s h h r 2 m displaystyle H 2 rm arcsh sqrt frac h r 2 mu nbsp Rozv yazok rivnyannya Keplera RedaguvatiRozv yazok rivnyannya Keplera v eliptichnomu i giperbolichnomu vipadkah isnuye i yedinij za bud yakih dijsnih M 2 Dlya kolovoyi orbiti e 0 rivnyannya Keplera nabuvaye trivialnogo viglyadu M E V zagalnomu viglyadi rivnyannya Keplera transcendentne Vono ne rozv yazuyetsya v algebrayichnih funkciyah Odnak jogo rozv yazok mozhna znajti riznimi sposobami za dopomogoyu zbizhnih ryadiv Zagalnij rozv yazok rivnyannya Keplera mozhna zapisati za dopomogoyu ryadiv Fur ye E M 2 n 1 n 1 n J n n e sin n M displaystyle E M 2 cdot sum n 1 n frac 1 n J n left n e right cdot sin nM nbsp de J m x 1 p 0 p cos m E x sin E d E displaystyle J m left x right frac 1 pi int limits 0 pi cos left mE x sin E right dE nbsp funkciya Besselya Cej ryad zbigayetsya koli velichina e ne perevishuye znachennya granici Laplasa Nablizheni metodi Redaguvati Sered chiselnih metodiv rozv yazuvannya rivnyannya Keplera chasto vikoristovuyut metod neruhomoyi tochki metod prostoyi iteraciyi i metod Nyutona 3 Dlya eliptichnogo vipadku v metodi neruhomoyi tochki za pochatkove znachennya E0 mozhna vzyati M a poslidovni nablizhennya mayut takij viglyad 2 E n 1 e sin E n M displaystyle E n 1 e sin E n M nbsp V giperbolichnomu vipadku metod neruhomoyi tochki podibnim chinom vikoristovuvati ne mozhna odnak cej metod daye mozhlivist vivesti dlya takogo vipadku inshu formulu nablizhen z giperbolichnim arksinusom 2 H n 1 Arsh H n M e displaystyle H n 1 operatorname Arsh frac H n M e nbsp Primitki Redaguvati Lukyanov Shirmin 2009 s 70 71 a b v Balk M B Reshenie uravneniya Keplera Elementy dinamiki kosmicheskogo poleta M Nauka 1965 S 111 118 Mehanika kosmicheskogo poleta Balk M B Demin V G Kunicyn A L Reshenie uravneniya Keplera Sbornik zadach po nebesnoj mehanike i kosmodinamike M Nauka 1972 S 63 Literatura RedaguvatiD E Ohocimskij Yu G Siharulidze Osnovy mehaniki kosmicheskogo poleta Moskva Nauka 1990 V E Zharov Sfericheskaya astronomiya Fryazino 2006 S 480 ISBN ISBN 5 85099 168 9 G M Fihtengolc Kurs differencialnogo i integralnogo ischisleniya Tom 3 Lukyanov L G Shirmin G I Lekcii po nebesnoj mehanike Almaty 2009 S 276 Otrimano z https uk wikipedia org w index php title Rivnyannya Keplera amp oldid 32916324