www.wikidata.uk-ua.nina.az
Cya stattya pro teoremu Bezu v arifmetici Pro teoremu Bezu v algebrayichnij geometriyi div Teorema Bezu algebrichna geometriya V elementarnij teoriyi chisel totozhnist rivnyannya Bezu takozh vikoristovuyut nazvu lema Bezu ce nastupna teorema Totozhnist Bezu Nehaj a displaystyle a i b displaystyle b cili chisla z najbilshim spilnim dilnikom d displaystyle d Todi isnuyut cili chisla x displaystyle x i y displaystyle y taki sho a x b y d displaystyle ax by d Bilsh tochnishe cili chisla viglyadu a x b y displaystyle ax by ye dilnikami d displaystyle d Najbilshim spilnim dilnikom dvuh nuliv prijnyato vvazhati 0 Cili chisla x displaystyle x i y displaystyle y nazivayutsya koeficiyentami Bezu dlya a b displaystyle a b voni ne yedini Para koeficiyentiv Bezu mozhe buti obchislena za dopomogoyu rozshirenogo algoritmu Evklida i cya para ye odniyeyu z dvoh par takih sho x b d displaystyle x leq b d i y a d displaystyle y leq a d Rivnist mozhe mati misce lishe za umovi sho odne z a displaystyle a abo b displaystyle b ye kratnim inshomu Yak priklad najbilshim spilnim dilnikom 15 i 69 ye 3 i mozhna zapisati 15 9 69 2 3 displaystyle 15 cdot 9 69 cdot 2 3 Bagato inshih teorem v elementarnij teoriyi chisel takih yak Lema Evklida abo kitajska teorema pro ostachi ye naslidkami rivnyannya Bezu Kilce Bezu ce oblast cilisnosti v yakij vikonuyetsya rivnyannya Bezu Zokrema rivnyannya Bezu vikonuyetsya v oblasti golovnih idealiv Takim chinom kozhna teorema yaka viplivaye z rivnyannya Bezu ye spravedlivoyu u vsih cih oblastyah Zmist 1 Struktura rozv yazku 1 1 Priklad 2 Dovedennya 3 Uzagalnennya 3 1 Dlya troh abo bilshe cilih chisel 3 2 Dlya mnogochleniv 3 3 Dlya oblasti golovnih idealiv 4 Istoriya 5 Div takozh 6 Primitki 7 Zovnishi linkiStruktura rozv yazku RedaguvatiYaksho a displaystyle a nbsp i b displaystyle b nbsp ne ye odnochasno nulyami i odna para koeficiyentiv Bezu x y displaystyle x y nbsp bula znajdena napriklad za dopomogoyu rozshirenogo algoritmu Evklida to usi pari mozhna predstaviti u viglyadi x k b d y k a d displaystyle left x k frac b d y k frac a d right nbsp de k displaystyle k nbsp dovilne cile chislo d displaystyle d nbsp najbilshij spilnij dilnik chisel a displaystyle a nbsp ta b displaystyle b nbsp i drobi sprosheno do cilih chisel Yaksho obidva a displaystyle a nbsp i b displaystyle b nbsp nenulovi todi rivno dvi z cih par koeficiyentiv Bezu zadovolnyayut umovi x b d ta y a d displaystyle x leq left frac b d right quad text ta quad y leq left frac a d right nbsp a rivnist mozhe mati misce lishe v tomu vipadku yaksho odne z a displaystyle a nbsp ta b displaystyle b nbsp dilit inshe Ce viplivaye z vlastivosti dilennya z ostacheyu nehaj zadano dva nenulovih cilih chisla c displaystyle c nbsp i d displaystyle d nbsp yaksho d displaystyle d nbsp ne dilit c displaystyle c nbsp to ye rivno odna para q r displaystyle q r nbsp taka sho c d q r displaystyle c dq r nbsp ta 0 lt r lt d displaystyle 0 lt r lt d nbsp ta ishe odna para taka sho c d q r displaystyle c dq r nbsp ta d lt r lt 0 displaystyle d lt r lt 0 nbsp Dvi pari malih koeficiyentiv Bezu yaki otrimuyut iz vidomoyi pari x y displaystyle x y nbsp zafiksuvavshi k displaystyle k nbsp u navedenij vishe formuli bud yake z dvoh cilih chisel najblizhchih do x b d displaystyle frac x b d nbsp Rozshirenij algoritm Evklida zavzhdi daye odnu z cih dvoh minimalnih par Priklad Redaguvati Nehaj a 12 displaystyle a 12 nbsp i b 42 displaystyle b 42 nbsp todi NSD 12 42 6 displaystyle text NSD 12 42 6 nbsp i mayemo nastupni rivnyannya Bezu de chervonim poznacheno koeficiyenti Bezu dlya minimalnih par i sinim dlya inshih 12 10 42 3 6 12 3 42 1 6 12 4 42 1 6 12 11 42 3 6 12 18 42 5 6 displaystyle begin aligned vdots 12 amp times color blue 10 amp 42 amp times color blue 3 amp 6 12 amp times color red 3 amp 42 amp times color red 1 amp 6 12 amp times color red 4 amp 42 amp times color red 1 amp 6 12 amp times color blue 11 amp 42 amp times color blue 3 amp 6 12 amp times color blue 18 amp 42 amp times color blue 5 amp 6 vdots end aligned nbsp Yaksho x y 18 5 displaystyle x y 18 5 nbsp pochatkova para koeficiyentiv Bezu todi 18 42 6 2 3 displaystyle frac 18 42 6 in 2 3 nbsp viznachaye minimalnu paru dlya k 2 displaystyle k 2 nbsp ta k 3 displaystyle k 3 nbsp tobto 18 2 7 5 2 2 4 1 displaystyle 18 2 cdot 7 5 2 cdot 2 4 1 nbsp i 18 3 7 5 3 2 3 1 displaystyle 18 3 cdot 7 5 3 cdot 2 3 1 nbsp Dovedennya RedaguvatiNehaj zadano bud yaki nenulovi cili chisla a displaystyle a nbsp ta b displaystyle b nbsp i nehaj S a x b y x y Z i a x b y gt 0 displaystyle S ax by mid x y in mathbb Z text i ax by gt 0 nbsp Mnozhina S displaystyle S nbsp ne ye porozhnoyu oskilki vona vklyuchaye abo a displaystyle a nbsp abo a displaystyle a nbsp z x 1 displaystyle x pm 1 nbsp ta y 0 displaystyle y 0 nbsp Oskilki S displaystyle S nbsp neporozhnya mnozhina naturalnih chisel to vona maye minimalnij element d a s b t displaystyle d as bt nbsp principom cilkovitogo vporyadkuvannya en Shob dovesti sho d displaystyle d nbsp najbilshij spilnij dilnik a displaystyle a nbsp ta b displaystyle b nbsp treba dovesti sho d displaystyle d nbsp spilnij dilnik b displaystyle b nbsp ta b displaystyle b nbsp i sho dlya bud yakogo inshogo spilnogo dilnika c displaystyle c nbsp vikonuyetsya nerivnist c d displaystyle c leq d nbsp Vidpovidno do algoritmu Evklida dilennya z ostacheyu a displaystyle a nbsp na d displaystyle d nbsp otrimuyemo sho a d q r z 0 r lt d displaystyle a dq r quad text z quad 0 leq r lt d nbsp Ostacha r displaystyle r nbsp nalezhit S 0 displaystyle S cup 0 nbsp oskilki r a q d a q a s b t a 1 q s b q t displaystyle begin aligned r amp a qd amp a q as bt amp a 1 qs bqt end aligned nbsp Takim chinom r displaystyle r nbsp maye viglyad a x b y displaystyle ax by nbsp i otzhe r S 0 displaystyle r in S cup 0 nbsp Ale 0 r lt d displaystyle 0 leq r lt d nbsp i d displaystyle d nbsp najmenshe naturalne chislo v S displaystyle S nbsp otzhe ostacha r displaystyle r nbsp ne mozhe nalezhati s displaystyle s nbsp tomu obov yazkovo r 0 displaystyle r 0 nbsp Ce oznachaye sho d displaystyle d nbsp dilnik a displaystyle a nbsp Analogichno d displaystyle d nbsp takozh ye dilnikom b displaystyle b nbsp i d displaystyle d nbsp spilnij dilnik a displaystyle a nbsp ta b displaystyle b nbsp Nehaj c displaystyle c nbsp bud yakij spilnij dilnik a displaystyle a nbsp ta b displaystyle b nbsp tobto isnuyut taki u displaystyle u nbsp ta v displaystyle v nbsp sho a c u displaystyle a cu nbsp i b c v displaystyle b cv nbsp Takim chinom d a s b t c u s c v t c u s v t displaystyle begin aligned d amp as bt amp cus cvt amp c us vt end aligned nbsp Tobto c displaystyle c nbsp dilnik d displaystyle d nbsp a otzhe c d displaystyle c leq d nbsp Uzagalnennya RedaguvatiDlya troh abo bilshe cilih chisel Redaguvati Totozhnist Bezu mozhna uzagalniti na vipadok bilsh nizh dvoh cilih chisel yaksho NSD a 1 a 2 a n d displaystyle text NSD a 1 a 2 dots a n d nbsp todi ye cili chisla x 1 x 2 x n displaystyle x 1 x 2 dots x n nbsp taki sho d a 1 x 1 a 2 x 2 a n x n displaystyle d a 1 x 1 a 2 x 2 cdots a n x n nbsp maye nastupni vlastivosti d displaystyle d nbsp najmenshe naturalne chislo takogo viglyadu bud yake chislo takogo viglyadu kratne d displaystyle d nbsp Dlya mnogochleniv Redaguvati Totozhnist Bezu pracyuye i u vipadku mnogochleniv odniyeyi zminnoyi nad deyakim polem tochno tak samo yak i dlya cilih chisel Zokrema koeficiyenti Bezu ta najbilshij spilnij dilnik mozhut buti obchisleni za dopomogoyu rozshirenogo algoritmu Evklida Oskilki spilni koreni dvoh mnogochleniv ye korenyami yih najbilshogo spilnogo dilnika to totozhnist Bezu i osnovna teorema algebri dayut nastupnij rezultat Dlya mnogochleniv f displaystyle f nbsp i g displaystyle g nbsp odniyeyi zminnoyi i z koeficiyentami nad deyakim polem isnuyut polinomi a displaystyle a nbsp i b taki sho a f b g 1 displaystyle af bg 1 nbsp todi i lishe todi yaksho f displaystyle f nbsp i g displaystyle g nbsp ne mayut spilnogo korenya v bud yakomu algebrayichno zamknenomu poli zazvichaj ce pole kompleksnih chisel Uzagalnennya cogo rezultatu na vipadok dovilnoyi kilkosti polinomiv ta neviznachenih rivnyan ye Teorema Gilberta pro nuli Dlya oblasti golovnih idealiv Redaguvati Yak zaznacheno u vstupi totozhnist Bezu pracyuye ne tilki v kilci cilih chisel ale i v bud yakij inshij oblasti golovnih idealiv Tobto yaksho R displaystyle R nbsp oblast golovnih idealiv a displaystyle a nbsp i b displaystyle b nbsp elementi R displaystyle R nbsp i d displaystyle d nbsp ye najbilshim spilnim dilnikom a displaystyle a nbsp i b displaystyle b nbsp todi v R displaystyle R nbsp ye elementi x displaystyle x nbsp i y displaystyle y nbsp taki sho a x b y d displaystyle ax by d nbsp Prichina u tomu sho ideal R a R b displaystyle Ra Rb nbsp ye golovnim i dorivnyuye R d displaystyle Rd nbsp Oblast cilisnosti v yakij vikonuyetsya totozhnist Bezu nazivayetsya kilcem Bezu Istoriya RedaguvatiFrancuzkij matematik Etyen Bezu 1730 1783 doviv cyu totozhnist dlya polinomiv 1 Odnak ce tverdzhennya dlya cilih chisel mozhna znajti vzhe v roboti inshogo francuzkogo matematika Kloda Gaspara Bashe de Meziriaka en 1581 1638 2 3 4 Div takozh RedaguvatiTeorema AF BG en Osnovna teorema arifmetiki Lema EvklidaPrimitki Redaguvati Bezout E 1779 Theorie generale des equations algebriques Paris France Ph D Pierres Tignol Jean Pierre 2001 Galois Theory of Algebraic Equations Singapore World Scientific ISBN 981 02 4541 6 Claude Gaspard Bachet sieur de Meziriac 1624 Problemes plaisants amp delectables qui se font par les nombres vid 2nd Lyons France Pierre Rigaud amp Associates s 18 33 Na cih storinkah Bashe dovodit bez rivnyan Proposition XVIII Deux nombres premiers entre eux estant donnez treuver le moindre multiple de chascun d iceux surpassant de l unite un multiple de l autre Dlya zadanih dvoh vzayemnoprostih chisel znajti najmenshe kratne kozhnogo z nih take sho odne perevishuye inshe na odinicyu Cya zadacha a same a x b y 1 displaystyle ax by 1 nbsp ye okremim vipadkom rivnyannya Bezu i bula vikoristana Bashe dlya rozv yazannya problem sho z yavlyayutsya na storinkah 199 i dali Div takozh Maarten Bullynck February 2009 Modular arithmetic before C F Gauss Systematizations and discussions on remainder problems in 18th century Germany Historia Mathematica 36 1 48 72 doi 10 1016 j hm 2008 08 009 Zovnishi linki RedaguvatiOnlajn kalkulyator dlya rivnyannya Bezu Weisstein Eric W Bezout s Identity angl na sajti Wolfram MathWorld Otrimano z https uk wikipedia org w index php title Rivnyannya Bezu amp oldid 37871174