www.wikidata.uk-ua.nina.az
Teoriya mnozhin Cermelo Frenkelya z aksiomoyu viboru poznachayetsya ZFC najposhirenisha aksiomatika teoriyi mnozhin i cherez ce najposhirenisha osnova matematiki ZFC mistit yedine primitivne ontologichne ponyattya mnozhina ta yedine ontologichne pripushennya sho vsi ob yekti v doslidzhuvanomu prostori napriklad vsi matematichni ob yekti ye mnozhinami Vvoditsya yedine binarne vidnoshennya prinalezhnist do mnozhini poznachaye sho mnozhina a displaystyle a ye elementom mnozhini b displaystyle b ta zapisuyetsya yak a b displaystyle a in b ZFC ye teoriyeyu pershogo poryadku v ZFC mistyatsya aksiomi v yakih vikoristovuyetsya logika pershogo poryadku Ci aksiomi opisuyut porivnyannya isnuvannya pobudovu ta vporyadkuvannya mnozhin Zmist 1 Peredumovi stvorennya 2 Aksiomi ZFC 2 1 Porivnyannya 2 1 1 Aksioma ekstensionalnosti ob yemnosti Z1 2 2 Isnuvannya 2 2 1 Aksioma neskinchennosti Z7 2 2 2 Aksioma porozhnoyi mnozhini 2 3 Pobudovi 2 3 1 Aksioma pari Z2 2 3 2 Aksioma buleana Z4 2 3 3 Aksioma ob yednannya Z5 2 3 4 Shema specifikaciyi aksioma vidilennya Z3 2 3 5 Shema peretvorennya aksioma pidstanovki ZF 2 4 Vporyadkuvannya 2 4 1 Aksioma regulyarnosti ZF 2 4 2 Aksioma viboru Z6 3 Nadlishkovist 4 Div takozh 5 DzherelaPeredumovi stvorennya RedaguvatiAksiomatichna teoriya mnozhin napryam u matematichnij logici prisvyachenij vivchennyu fragmentiv zmistovnoyi teoriyi mnozhin metodami matematichnoyi logiki Z ciyeyu metoyu fragmenti teoriyi mnozhin podayut u viglyadi aksiomatichnoyi teoriyi V osnovi suchasnoyi teoriyi mnozhin lezhit sistema aksiom yaki prijmayut bez dovedennya i z yakih vivodyat usi teoremi teoriyi mnozhin Peredumovami stvorennya takoyi teoriyi stalo vidkrittya deyakih paradoksiv antinomij superechnostej tak zvanoyi nayivnoyi teoriyi mnozhin Sered takih paradoksiv najbilsh vidomimi ye paradoksi Kantora i Rassela Pershoyu aksiomatikoyu takogo rodu bula sistema Z Cermelo E Zermelo 1908 Odnak u cij sistemi nemozhlivo bulo prirodnim chinom formalizuvati deyaki rozdili matematiki i A Frenkel A Frenkel 1922 zaproponuvav dopovniti sistemu Z novim principom yakij nazvav aksiomoyu pidstanovki Otrimanu sistemu nazivayut sistemoyu aksiom Cermelo Frenkelya i poznachayut ZF Cya sistema aksiom mistit yedine primitivne ontologichne fundamentalne ponyattya mnozhina ta yedine ontologichne pripushennya sho vsi doslidzhuvani ob yekti ye mnozhinami Zaprovadzheno yedine binarne vidnoshennya prinalezhnosti do mnozhini Aksiomi ZFC RedaguvatiPorivnyannya Redaguvati Aksioma ekstensionalnosti ob yemnosti Z1 Redaguvati Dvi mnozhini rivni todi j tilki todi koli voni mayut odni j ti zh elementi A B A B C C A C B displaystyle forall A forall B A B iff forall C C in A iff C in B nbsp Isnuvannya Redaguvati Aksioma neskinchennosti Z7 Redaguvati Isnuye taka mnozhina A sho vklyuchaye v sebe pustu mnozhinu ta dlya bud yakogo nalezhnogo yij elementa B vklyuchaye takozh i mnozhinu sformovanu yak ob yednannya B ta yiyi singletonu B A A B B A B B A displaystyle exists A varnothing in A land forall B B in A Rightarrow B cup B in A nbsp Aksioma porozhnoyi mnozhini Redaguvati Isnuye mnozhina bez elementiv A B B A displaystyle exists A forall B lnot B in A nbsp Taku mnozhinu zazvichaj poznachayut yak abo ta nazivayut porozhnoyu mnozhinoyu Pobudovi Redaguvati Aksioma pari Z2 Redaguvati Dlya bud yakih mnozhin A ta B isnuye mnozhina C taka sho A ta B ye yiyi yedinimi elementami Mnozhina C poznachayetsya A B i nazivayetsya nevporyadkovanoyu paroyu A ta B A B C D D C D A D B displaystyle forall A forall B exists C forall D D in C iff D A lor D B nbsp Tobto yaksho A B to isnuye mnozhina C taka sho vona skladayetsya z odnogo elementa A A A yakij maye nazvu singletona Aksioma buleana Z4 Redaguvati Dlya bud yakoyi mnozhini A isnuye mnozhina B elementami yakoyi ye ti j tilki ti elementi sho ye pidmnozhinami A A B C C B D D C D A displaystyle forall A exists B forall C C in B iff forall D D in C Rightarrow D in A nbsp Yaksho vvesti vidnoshennya pidmnozhini displaystyle subseteq nbsp to formulu mozhna sprostiti A B C C B C A displaystyle forall A exists B forall C C in B iff C subseteq A nbsp Mnozhinu B nazivayut buleanom mnozhini A ta poznachayut P A displaystyle mathcal P A nbsp Aksioma ob yednannya Z5 Redaguvati Dlya dvoh mnozhin isnuye tretya yaka vklyuchaye v sebe vsi elementi oboh i tilki yih A B C C B D C D D A displaystyle forall A exists B forall C C in B iff exists D C in D land D in A nbsp Z aksiomi pryamo viplivaye sho ob yednannya mnozhin takozh ye mnozhinoyu Mnozhina B nazivayetsya ob yednannyam A i poznachayetsya A Shema specifikaciyi aksioma vidilennya Z3 Redaguvati Dlya bud yakoyi mnozhini A i vlastivosti P isnuye mnozhina B elementami yakoyi ye ti j tilki ti elementi mnozhini A yaki mayu vlastivist P A B C C B C A P C displaystyle forall A exists B forall C C in B iff C in A land P C nbsp Dlya kozhnoyi takoyi vlastivosti P predikata sho ne vikoristovuye simvol B isnuye okrema aksioma vidilennya Tomu komplekt takih aksiom nazivayut shemoyu Shema peretvorennya aksioma pidstanovki ZF Redaguvati Nehaj A mnozhina i P x y predikat Todi yaksho dlya kozhnogo x isnuye yedinij y takij sho P x y istinnij todi isnuye mnozhina vsih y dlya yakih znajdetsya takij x A sho P x y istinnij x y P x y A B y y B x A P x y displaystyle forall x exists y P x y rightarrow forall A exists B forall y y in B iff exists x in A P x y nbsp Vporyadkuvannya Redaguvati Aksioma regulyarnosti ZF Redaguvati V bud yakij neporozhnij mnozhini A ye element B sho peretin A ta B ye porozhnoyu mnozhinoyu A B B A B B A C C A C B displaystyle forall A exists B B in A rightarrow exists B B in A land lnot exists C C in A land C in B nbsp Yaksho vvesti operaciyu peretinu mnozhin displaystyle cap nbsp to formulu mozhna sprostiti A A B B A B A displaystyle forall A A neq varnothing rightarrow exists B B in A wedge B cap A varnothing nbsp Aksioma viboru Z6 Redaguvati Dlya dovilnogo simejstva neporozhnih mnozhin sho ne peretinayutsya isnuye mnozhina yaka maye rivno odin spilnij element z kozhnoyu mnozhinoyu danogo simejstva navit yaksho mnozhin u simejstvi neskinchenno bagato i neviznacheno pravilo viboru elementa z kozhnoyi mnozhini Nadlishkovist RedaguvatiAksioma porozhnoyi mnozhini yavnim chi neyavnim chinom prisutnya u vsih aksiomatichnih teoriyah mnozhin V ZF ne ye viokremlenoyu a vklyuchayetsya v aksiomu neskinchennosti Aksiomna shema vidilennya ne vhodit v ZF oskilki vivoditsya iz piznishe vvedenoyi aksiomnoyi shemi pidstanovki ta aksiomi porozhnoyi mnozhini Aksioma pari vivoditsya iz aksiomi pidstanovki aksiomi porozhnoyi mnozhini ta aksiomi buleana Div takozh RedaguvatiTeoriya mnozhin Teoriya mnozhin fon Nejmana Bernajsa Gedelya Z notaciyaDzherela RedaguvatiHausdorf F Teoriya mnozhestv Moskva Leningrad ONTI 1937 304 s ISBN 978 5 382 00127 2 ros Kuratovskij K Mostovskij A Teoriya mnozhestv Set Theory Teoria mnogosci M Mir 1970 416 s ros Otrimano z https uk wikipedia org w index php title Teoriya mnozhin Cermelo Frenkelya amp oldid 37316573