www.wikidata.uk-ua.nina.az
Formula Gausa Bonne pov yazuye Ejlerovu harakteristiku oblasti dvovimirnogo mnogovida z krivinoyu Gausa v cij oblasti ta geodezichnoyu krivinoyu krivoyi yaka obmezhuye oblast Zmist 1 Formulyuvannya 2 Poyasnennya poznachen 2 1 Topologiya oblastej integruvannya 2 2 Krivini 2 3 Zlami na konturah 2 4 Ejlerova harakteristika 3 Tri etapi dovedennya teoremi Gausa Bonne 4 Pershij etap dovedennya 4 1 Obchislennya harakteristiki Ejlera 4 2 Vektori na konturi 4 3 Povoroti vektoriv na konturi i geodezichna krivina 4 4 Zastosuvannya formuli Ostrogradskogo Gausa 4 4 1 Vibir dopomizhnogo vektornogo polya 4 4 2 Obchislennya povorotu vektora pri paralelnomu perenesenni po konturu 4 4 3 Oderzhannya konturnogo integrala 4 4 4 Faktichne zastosuvannya formuli Ostrogradskogo Gausa 4 4 5 Zavershennya obchislen 5 Drugij etap dovedennya 6 Tretij etap dovedennya 7 IstoriyaFormulyuvannya red Nehaj W displaystyle Omega nbsp kompaktnij dvovimirnij oriyentovanij rimaniv mnogovid z gladkoyu mezheyu W displaystyle partial Omega nbsp Poznachimo cherez K displaystyle K nbsp gausovu krivinu W displaystyle Omega nbsp ta cherez k g displaystyle k g nbsp geodezichnu krivinu W displaystyle partial Omega nbsp Todi 1 W K d s L k g d s 2 p x W displaystyle 1 qquad iint Omega Kd sigma oint L k g ds 2 pi chi Omega nbsp de x W displaystyle chi Omega nbsp ejlerova harakteristika W displaystyle Omega nbsp Zokrema yaksho u W displaystyle Omega nbsp mezha vidsutnya otrimuyemo sproshenij viraz W K d s 2 p x W displaystyle int limits Omega K d sigma 2 pi chi Omega nbsp Yaksho poverhnya deformuyetsya to yiyi ejlerova harakteristika ne zminyuyetsya v toj chas yak gausova krivina mozhe zminyuvatisya v kozhnij tochci Prote zgidno z formuloyu Gausa Bonne integral gausovoyi krivini zalishayetsya ne zminnim Poyasnennya poznachen red Topologiya oblastej integruvannya red Oblast W displaystyle Omega nbsp obmezhena Ale vona mozhe buti dovoli skladnoyu mati odnu abo kilka komponent zv yaznosti 2 W W 1 W 2 displaystyle 2 qquad Omega Omega 1 Omega 2 dots nbsp Ochevidno sho pri comu pershij integral v formuli 1 rozbivayetsya na sumu integraliv po komponentah Kozhna z cih komponent W i displaystyle Omega i nbsp v svoyu chergu mozhe buti topologichno skladnoyu nbsp Zokrema oblast W displaystyle Omega nbsp mozhe povnistyu pokrivati zamknutij mnogovid napriklad sferu tor i ne mati mezhi zovsim todi drugogo integrala v formuli 1 ne bude 3 W K d s 2 p x W displaystyle 3 qquad iint Omega Kd sigma 2 pi chi Omega nbsp V inshih vipadkah mezha L i displaystyle L i nbsp oblasti W i displaystyle Omega i nbsp mozhe skladatisya z odnogo konturu napriklad yaksho oblast gomeomorfna krugu abo bilshoyi kilkosti konturiv L i j displaystyle L ij nbsp napriklad yaksho oblast ye kilcem mizh dvoma koncentrichnimi kolami 4 L i j L i j displaystyle 4 qquad L i sum j L ij nbsp V cih vipadkah integral po mezhi L displaystyle L nbsp takozh rozbivayetsya na sumu integraliv po L i j displaystyle L ij nbsp Krivini red Bukvoyu K displaystyle K nbsp pid pershim integralom 1 poznacheno krivinoyu Gausa drugogo stepenya yaka dlya dvovimirnogo mnogovida dorivnyuye polovini skalyarnoyi krivini 5 K K 2 R 2 displaystyle 5 qquad K K 2 R over 2 nbsp Geodezichna krivina k g displaystyle mathbf k g nbsp krivoyi vzagali kazhuchi ye vektorom ortogonalnim do odinichnogo dotichnogo vektora t d r d s displaystyle boldsymbol tau d mathbf r over ds nbsp i yakij lezhit u mnogovidi Ale v formuli 1 cherez k g displaystyle k g nbsp poznacheno skalyarnu velichinu proyekciyu vektora geodezichnoyi krivini na napryam normali napryamlenoyi vseredinu oblasti W displaystyle Omega nbsp Zapishemo visheskazane matematichno Komponenti vektora geodezichnoyi krivini obchislyuyutsya cherez tenzornu pohidnu odinichnogo dotichnogo vektora t i displaystyle tau i nbsp po naturalnomu parametru krivoyi 6 k g i D t i D s d t i d s G j k i t j t k displaystyle 6 qquad k g i D tau i over Ds d tau i over ds Gamma jk i tau j tau k nbsp Normal do vektora t i displaystyle tau i nbsp mozhna utvoriti diyeyu odinichnogo antisimetrichnogo tenzora e i j displaystyle varepsilon ij nbsp a tomu pri nalezhnomu vibori napryamku obhodu konturu 7 k g i k g e i j t j displaystyle 7 qquad k g i k g varepsilon ij tau j nbsp Koeficiyent k g displaystyle k g nbsp v pravij chastini formuli 7 toj samij yakij stoyit pid drugim integralom v formuli 1 Zlami na konturah red V poperednomu pidpunkti mi rozglyadali gladkij kontur L displaystyle L nbsp Ale nevazhko vikoristovuyuchi granichnij perehid uzagalniti formulu 1 dlya kuskovo gladkoyi mezhi yaka skladayetsya z gladkih dug sho shodyatsya pid deyakim kutom mizh soboyu divitsya napriklad stattyu Geodezichnij trikutnik Yaksho v tochci zlamu P i displaystyle P i nbsp dotichnij vektor t displaystyle boldsymbol tau nbsp rozvertayetsya na kut ϕ i displaystyle phi i nbsp v storonu oblasti W displaystyle Omega nbsp mozhe buti dodatne chi vid yemne chislo to formula 1 uzagalnyuyetsya do takoyi 8 W K d s L k g d s i ϕ i 2 p x W displaystyle 8 qquad iint Omega Kd sigma oint L k g ds sum i phi i 2 pi chi Omega nbsp V cij formuli drugij integral beretsya po gladkih dilyankah dug mezhi L displaystyle L nbsp Dlya vivodu formuli 8 oblast W displaystyle Omega nbsp yaka maye zlami na mezhi treba aproksimuvati oblastyu W displaystyle tilde Omega nbsp yaka maye zgladzheni kuti Potim radius zakruglennya na kutah spryamovuyemo do nulya Ejlerova harakteristika red Obmezhenu dvovimirnu oblast W displaystyle Omega nbsp mozhna rozbiti liniyami na kilka menshih pidoblastej W 1 W 2 displaystyle Omega 1 Omega 2 dots nbsp gomeomorfnih krugu Liniyi v svoyu chergu mozhna podiliti tochkami na dugi gomeomorfni vidrizku Yaksho poznachiti kilkist tochok bukvoyu B displaystyle B nbsp vershini grafu kilkist dug bukvoyu P displaystyle P nbsp rebra grafu a kilkist pidoblastej bukvoyu G displaystyle Gamma nbsp grani to nastupne cile chislo 9 x B P G displaystyle 9 qquad chi B P Gamma nbsp ne zalezhit vid sposobu rozbivki oblasti W displaystyle Omega nbsp i nazivayetsya harakteristikoyu Ejlera Dlya kozhnoyi pidoblasti W k displaystyle Omega k nbsp mozhna znajti kartu sistemu koordinat u 1 u 2 displaystyle u 1 u 2 nbsp yaka vidobrazhaye oblast Evklidovoyi ploshini v W k displaystyle Omega k nbsp Tri etapi dovedennya teoremi Gausa Bonne red Na pershomu etapi dovodimo teoremu dlya prostoyi oblasti gomeomorfnoyi krugu z gladkoyu graniceyu Na drugomu etapi granichnim perehodom poshiryuyemo teoremu na prostu oblast z kutami Na tretomu topologichnomu etapi ob yednuyemo ta skleyuyemo prosti oblasti v dovilnu oblast i pokazuyemo sho pri operaciyah ob yednannya ta sklejki formula 1 zalishayetsya spravedlivoyu Pershij etap dovedennya red Obchislennya harakteristiki Ejlera red Obchislimo harakteristiku Ejlera dlya prostoyi oblasti W displaystyle Omega nbsp Mezha ciyeyi oblasti ye konturom L displaystyle L nbsp gomeomorfnim kolu Postavimo na comu konturi dvi tochki P displaystyle P nbsp i Q displaystyle Q nbsp yaki rozbivayut nash kontur na dvi dugi gomeomorfni vidrizku Mayemo dvi vershini dva rebra i odnu gran samu oblast W displaystyle Omega nbsp tomu za formuloyu 9 mayemo 10 x B P G 2 2 1 1 displaystyle 10 qquad chi B P Gamma 2 2 1 1 nbsp i nam treba dovesti nastupnu formulu dlya cogo vipadku 11 W K d s L k g d s 2 p displaystyle 11 qquad iint Omega Kd sigma oint L k g ds 2 pi nbsp Vektori na konturi red nbsp Paralelnij obhid kontura vektorom vVizmemo tochku P displaystyle P nbsp na konturi L displaystyle L nbsp Poznachimo bukvoyu n displaystyle mathbf n nbsp vektor normali do konturu napryamlenij vseredinu oblasti W displaystyle Omega nbsp Pri nalezhnomu vibori napryamku obhodu konturu komponenti cogo vektora virazhayutsya cherez dotichnij vektor t i displaystyle tau i nbsp ta odinichnij antisimetrichnij tenzor e i j displaystyle varepsilon ij nbsp 12 n i e i j t j displaystyle 12 qquad n i varepsilon ij tau j nbsp Pri obhodi konturu ochevidno vektori n displaystyle mathbf n nbsp i t displaystyle boldsymbol tau nbsp povernutsya na kut 2 p displaystyle 2 pi nbsp i zbizhatsya z pochatkovimi znachennyami cih vektoriv Shob prostezhiti yak zdijsnyuyetsya cej povorot rozglyanemo paralelne perenesennya vektoriv Yak vidomo pri paralelnomu perenesenni dvoh vektoriv zberigayutsya dovzhini vektoriv i kut mizh nimi Nehaj vektori v displaystyle mathbf v nbsp i w displaystyle mathbf w nbsp zbigayutsya z vektorami t displaystyle boldsymbol tau nbsp i n displaystyle mathbf n nbsp v pochatkovij tochci P displaystyle P nbsp ale potim pri obhodi konturu perenosyatsya paralelno i pislya obhodu viyavlyayutsya povernutimi na deyakij kut D a displaystyle Delta alpha nbsp Ci dva vektora utvoryuyut ortonormovanij bazis 13 v 2 w 2 1 v w 0 displaystyle 13 qquad mathbf v 2 mathbf w 2 1 qquad mathbf v cdot mathbf w 0 nbsp 14 w i e i j v j displaystyle 14 qquad w i varepsilon ij v j nbsp Rozklademo odinichnij dotichnij vektor t displaystyle boldsymbol tau nbsp za bazisom v w displaystyle mathbf v mathbf w nbsp 15 t v cos f w sin f displaystyle 15 qquad boldsymbol tau mathbf v cos varphi mathbf w sin varphi nbsp de f displaystyle varphi nbsp kut na yakij povernutij vektor t displaystyle boldsymbol tau nbsp vidnosno vektora v displaystyle mathbf v nbsp Na pochatku obhodu f f 0 0 displaystyle varphi varphi 0 0 nbsp V kinci obhodu vektor t displaystyle boldsymbol tau nbsp povernetsya na kut 2 p displaystyle 2 pi nbsp a vektor v displaystyle mathbf v nbsp na kut D a displaystyle Delta alpha nbsp tomu 16 f 1 2 p D a displaystyle 16 qquad varphi 1 2 pi Delta alpha nbsp Povoroti vektoriv na konturi i geodezichna krivina red Mayemo taki tenzorni diferenciali vektoriv vzdovzh konturu 17 D t i d t i G j k i t j d u k k g i d s displaystyle 17 qquad D tau i d tau i Gamma jk i tau j du k k g i ds nbsp 18 D v i d v i G j k i v j d u k 0 displaystyle 18 qquad Dv i dv i Gamma jk i v j du k 0 nbsp 19 D w i d w i G j k i w j d u k 0 displaystyle 19 qquad Dw i dw i Gamma jk i w j du k 0 nbsp tomu pri diferenciyuvanni rivnosti 15 oderzhuyemo 20 k g i d s v i sin f d f w i cos f d f displaystyle 20 qquad k g i ds v i sin varphi d varphi w i cos varphi d varphi nbsp e i j w j sin f v j cos f d f e i j t j d f displaystyle varepsilon ij w j sin varphi v j cos varphi d varphi varepsilon ij tau j d varphi nbsp Porivnyuyuchi formuli 20 i 7 znahodimo 21 k g d s d f displaystyle 21 qquad k g ds d varphi nbsp 22 L k g d s f 0 f 1 d f 2 p D a displaystyle 22 qquad oint L k g ds int varphi 0 varphi 1 d varphi 2 pi Delta alpha nbsp Porivnyuyuchi formuli 22 i 11 oderzhuyemo taku formulu yaku nam lishayetsya dovesti 23 W K d s D a displaystyle 23 qquad iint Omega Kd sigma Delta alpha nbsp Zastosuvannya formuli Ostrogradskogo Gausa red V livij chastini formuli 23 stoyit integral po dvovimirnij oblasti W displaystyle Omega nbsp a v pravij povorot vektora pri paralelnomu perenesenni dovkola mezhi L displaystyle L nbsp oblasti W displaystyle Omega nbsp yakij prirodno bude viraziti cherez konturnij integral Ci dva integrala integral po dvovimirnij oblasti i integral po mezhi ciyeyi oblasti mozhna pov yazati cherez zastosuvannya formuli Ostrogradskogo Gausa Ale dlya cogo nam znadobitsya dopomizhne vektorne pole yake viznachene i diferencijovne skriz vseredini oblasti W displaystyle Omega nbsp ta na yiyi mezhi L displaystyle L nbsp Vibir dopomizhnogo vektornogo polya red Oskilki na konturi L displaystyle L nbsp nas mozhut cikaviti lishe kuti mizh vektorami a ne yihni dovzhini to docilno vibrati dopomizhne vektorne pole a displaystyle mathbf a nbsp odinichnoyi dovzhini prichomu ne lishe na konturi a i skriz vseredini oblasti W displaystyle Omega nbsp 24 a 2 g i j a i a j g 11 a 1 2 2 g 12 a 1 a 2 g 22 a 2 2 1 displaystyle 24 qquad mathbf a 2 g ij a i a j g 11 a 1 2 2g 12 a 1 a 2 g 22 a 2 2 1 nbsp Ochevidno sho umova 24 razom z neperervnistyu polya a displaystyle mathbf a nbsp nakladaye deyaki obmezhennya ce pole ne mozhe mati vseredini W displaystyle Omega nbsp tochok zavihrennya abo tochok iz yakih vektori rozhodyatsya abo navpaki shodyatsya v rizni boki V usomu inshomu pole a displaystyle mathbf a nbsp dosit dovilne Napriklad hoch i neobov yazkovo mozhna vzyati vektor napryamlenij vzdovzh odnogo z koordinatnih vektoriv Kovariantni koordinati cogo vektora 25 a 1 1 g 11 a 2 0 displaystyle 25 qquad a 1 1 over sqrt g 11 qquad a 2 0 nbsp Obchislennya povorotu vektora pri paralelnomu perenesenni po konturu red nbsp Vektor a vseredini konturaNa konturi L displaystyle L nbsp rozklademo odinichnij vektor a displaystyle mathbf a nbsp po bazisu v w displaystyle mathbf v mathbf w nbsp 26 a i v i cos a w i sin a displaystyle 26 qquad a i v i cos alpha w i sin alpha nbsp Tut vektori v displaystyle mathbf v nbsp i w displaystyle mathbf w nbsp ti zh sami sho i ranishe v cij statti zdijsnyuyut paralelnij obhid konturu Kut a displaystyle alpha nbsp mizh vektorami v a displaystyle widehat mathbf v mathbf a nbsp ye funkciyeyu vid naturalnogo parametra s displaystyle s nbsp na konturi L displaystyle L nbsp 27 a a s a 0 a 0 a s max a 1 displaystyle 27 qquad alpha alpha s qquad alpha 0 alpha 0 alpha s text max alpha 1 nbsp Oskilki pri obhodi konturu vektor a displaystyle mathbf a nbsp ne zminyuye napryamku a vektor v displaystyle mathbf v nbsp povertayetsya na kut D a displaystyle Delta alpha nbsp to 28 D a a 1 a 0 displaystyle 28 qquad Delta alpha alpha 1 alpha 0 nbsp Znak minus v cij formuli vinik vnaslidok togo sho povertayetsya sam bazis vidnosno yakogo mi miryayemo a displaystyle alpha nbsp Prodiferenciyuyemo formulu 26 vzdovzh krivoyi L displaystyle L nbsp 29 D a i v i sin a w i cos a d a displaystyle 29 qquad Da i v i sin alpha w i cos alpha d alpha nbsp Tenzornij diferencial vektora a displaystyle mathbf a nbsp mozhna zapisati cherez kovariantnu pohidnu 30 D a i d a i G j k i a j d u k k a i G j k i a j d u k k a i t k d s displaystyle 30 qquad Da i da i Gamma jk i a j du k left partial k a i Gamma jk i a j right du k nabla k a i tau k ds nbsp Prava zh chastina formuli 29 virazhayetsya cherez vektor 31 b i e i j a j e i j v j cos a w j sin a w i cos a v i sin a displaystyle 31 qquad b i varepsilon ij a j varepsilon ij left v j cos alpha w j sin alpha right w i cos alpha v i sin alpha nbsp yakij ye odinichnim vektorom povernutim na kut p 2 displaystyle pi over 2 nbsp shodo vektora a displaystyle mathbf a nbsp Oderzhannya konturnogo integrala red Pidstavivshi 30 i 31 v formulu 29 mi oderzhimo vektorne rivnyannya 32 k a i t k d s b i d a displaystyle 32 qquad nabla k a i tau k ds b i d alpha nbsp v yakomu nas cikavit skalyarna funkciya a a s displaystyle alpha alpha s nbsp Pomnozhimo 32 skalyarno na odinichnij vektor b i displaystyle b i nbsp i vizmemo integral 33 0 s max b i k a i t k d s 0 s max d a a 1 a 0 D a displaystyle 33 qquad int 0 s text max b i nabla k a i tau k ds int 0 s text max d alpha alpha 1 alpha 0 Delta alpha nbsp Integral v livij chastini ciyeyi rivnosti faktichno ye integralom po konturu Dlya zastosuvannya formuli Ostrogradskogo Gausa nam potribno shob pidintegralnij viraz buv skalyarnim dobutkom deyakogo vektora q displaystyle mathbf q nbsp na vektor zovnishnoyi normali v nashih starih poznachennyah ce n i e i j t j displaystyle n i varepsilon ij tau j nbsp Faktichne zastosuvannya formuli Ostrogradskogo Gausa red Domnozhimo rivnyannya 12 na e i k displaystyle varepsilon ik nbsp pislya cogo znajdemo dotichnij vektor t k displaystyle tau k nbsp 34 e i k n i e i k e i j t j d j k t j t k displaystyle 34 qquad varepsilon ik n i left varepsilon ik varepsilon ij right tau j delta j k tau j tau k nbsp i pidstaviti jogo v pidintegralnij viraz formuli 33 odnochasno perejmenovuyuchi indeksi 35 b i k a i t k e i k b l k a l n i displaystyle 35 qquad b i nabla k a i tau k left varepsilon ik b l nabla k a l right n i nbsp Viraz u duzhkah v pravij chastini cogo rivnyannya i bude tim vektorom q displaystyle mathbf q nbsp 36 q i e i k b l k a l displaystyle 36 qquad q i varepsilon ik b l nabla k a l nbsp yakij pidstavlyayemo v rivnyannya 33 37 L q n d s D a displaystyle 37 qquad oint L mathbf q cdot mathbf n ds Delta alpha nbsp Integral yavlyaye soboyu potik vektora q displaystyle mathbf q nbsp vseredinu konturu L displaystyle L nbsp vrahovuyuchi nash vibir napryamku normali n displaystyle mathbf n nbsp Zastosovuyuchi formulu Ostrogradskogo Gausa i vrahovuyuchi znak mayemo integral vid divergenciyi 38 W q d s D a displaystyle 38 qquad iint Omega boldsymbol nabla cdot mathbf q d sigma Delta alpha nbsp Zavershennya obchislen red Porivnyuyuchi formuli 38 i 23 mi bachimo sho dlya zavershennya pershogo etapu nam dosit pereviriti rivnist pidintegralnih viraziv cih formul 39 K q i q i displaystyle 39 qquad K boldsymbol nabla cdot mathbf q nabla i q i nbsp Divergenciya vektora 36 rozkladayetsya na dva dodanka 40 j q j j e j k b i k a i e j k j b i k a i b i e j k j k a i displaystyle 40 qquad nabla j q j nabla j left varepsilon jk b i nabla k a i right varepsilon jk left nabla j b i right left nabla k a i right b i varepsilon jk nabla j nabla k a i nbsp Rozpochnemo z drugogo dodanku a she krashe z chastini cogo dodanku okrim mnozhnika b i displaystyle b i nbsp Oskilki tenzor e j k displaystyle varepsilon jk nbsp antisimetrichnij to 41 e j k j k a i 1 2 e j k j k k j a i 1 2 e j k R s j k i a s 1 2 e j k R j k i s a s displaystyle 41 qquad varepsilon jk nabla j nabla k a i 1 over 2 varepsilon jk left nabla j nabla k nabla k nabla j right a i 1 over 2 varepsilon jk R sjk i a s 1 over 2 varepsilon jk R jk is a s nbsp Tenzor Rimana dlya dvovimirnogo mnogovida mozhna viraziti cherez krivinu Gausa K 42 R j k i s K d j i d k s d k i d j s displaystyle 42 qquad R jk is K left delta j i delta k s delta k i delta j s right nbsp Tomu viraz 41 sproshuyetsya 43 e j k j k a i K 2 e j k d j i d k s d k i d j s a s K 2 2 e i s a s K b i displaystyle 43 qquad varepsilon jk nabla j nabla k a i K over 2 varepsilon jk left delta j i delta k s delta k i delta j s right a s K over 2 2 varepsilon is a s Kb i nbsp a otzhe drugij dodanok formuli 40 prosto dorivnyuye Gausovij krivini 44 b i e j k j k a i K b i b i K displaystyle 44 qquad b i varepsilon jk nabla j nabla k a i Kb i b i K nbsp Zalishayetsya pokazati sho pershij dodanok formuli 40 dorivnyuye nulyu 45 e j k j b i k a i 0 displaystyle 45 qquad varepsilon jk left nabla j b i right left nabla k a i right 0 nbsp Ce pryamo sliduye z togo faktu sho pohidni odinichnogo dvovimirnogo vektora faktorizuyutsya rozkladayutsya na mnozhniki 46 j b i l j a i k a i m k b i displaystyle 46 qquad nabla j b i lambda j a i qquad nabla k a i mu k b i nbsp Dijsno pidstavlyayuchi 46 v 45 oderzhimo viraz 47 e j k l j m k a i b i displaystyle 47 qquad left varepsilon jk lambda j mu k right left a i b i right nbsp v yakomu skalyarnij dobutok vektoriv v drugih duzhkah dorivnyuye nulyu Nareshti pokazhemo spravedlivist rozkladu 46 Iz odinichnosti vektora a displaystyle mathbf a nbsp sliduye 48 a i k a i g i j a j k a i 1 2 k g i j a j a i 1 2 k 1 0 displaystyle 48 qquad a i nabla k a i g ij a j nabla k a i 1 over 2 nabla k left g ij a j a i right 1 over 2 nabla k 1 0 nbsp Oskilki vektor b displaystyle mathbf b nbsp takozh ortogonalnij do a displaystyle mathbf a nbsp to mayemo nastupnu odnoridnu sistemu dvoh linijnih rivnyan z dvoma nevidomimi a 1 a 2 displaystyle a 1 a 2 nbsp 49 k a 1 a 1 k a 2 a 2 0 b 1 a 1 b 2 a 2 0 displaystyle 49 qquad begin cases nabla k a 1 a 1 nabla k a 2 a 2 0 b 1 a 1 b 2 a 2 0 end cases nbsp Cya sistema maye nenulovij rozv yazok tomu matricya yiyi koeficiyentiv 50 k a 1 k a 2 b 1 b 2 displaystyle 50 qquad begin bmatrix nabla k a 1 amp nabla k a 2 b 1 amp b 2 end bmatrix nbsp virodzhena i ryadki ciyeyi matrici proporcijni Tobto mi mayemo druge rivnyannya 46 Pershe rivnyannya oderzhuyetsya analogichno Formulu 11 dovedeno Drugij etap dovedennya red Rozglyanemo prostu oblast z kuskovo gladkoyu mezheyu Mi mozhemo zgladiti vsi kuti vpisuyuchi gladku dugu A B displaystyle AB nbsp v kozhen krivolinijnij kut P displaystyle P nbsp div malyunok nbsp Zakruglennya krivolinijnogo kutaOderzhuyemo oblast z gladkoyu mezheyu do yakoyi mozhna zastosuvati teoremu Gausa Bonne dovedenu na pershomu etapi Sprobuyemo zdijsniti granichnij perehid formuli 11 styaguyuchi dugu A B displaystyle AB nbsp v tochku zlamu P displaystyle P nbsp Pershij integral formuli 11 dlya zgladzhenoyi i nezgladzhenoyi krivih vidriznyayetsya na velichinu integrala po krivolinijnomu trikutniku A B P displaystyle ABP nbsp 51 A B P K d s displaystyle 51 qquad iint triangle ABP Kd sigma nbsp Oskilki plosha cogo trikutnika pryamuye do nulya a Gausova krivina K displaystyle K nbsp obmezhena to i velichina 51 pryamuye do nulya Otzhe pri granichnomu perehodi pershij integral 52 W K d s displaystyle 52 qquad iint Omega Kd sigma nbsp zberigaye svij viglyad prosto oblast W displaystyle Omega nbsp mozhe mati zlami na konturi Z drugim konturnim integralom skladnishe Rozglyanemo spochatku vipadok ploskogo mnogovida evklidovu ploshinu V comu razi paralelne perenesennya ne zalezhit vid shlyahu i tomu mozhna govoriti pro kut mizh vektorami sho znahodyatsya v riznih tochkah Integruvannya geodezichnoyi krivini po duzi A B displaystyle AB nbsp zgidno z formuloyu 22 daye kut mizh dotichnimi v tochkah A displaystyle A nbsp i B displaystyle B nbsp 53 A B k g d s ϕ A ϕ B displaystyle 53 qquad int smile AB k g ds phi A phi B nbsp Pri granichnomu perehodi cya velichina pryamuye do kuta ϕ displaystyle phi nbsp mizh dvoma dotichnimi vektorami v tochci zlamu P displaystyle P nbsp 54 A B k g d s ϕ displaystyle 54 qquad qquad int smile AB k g ds to phi nbsp a integrali po vikinutih pri zgladzhuvanni dugah A P displaystyle AP nbsp i P B displaystyle PB nbsp pryamuyut do nulya oskilki geodezichna krivina cih dug zalishayetsya obmezhenoyu a yihnya dovzhina zmenshuyetsya do nulya Iz formuli 54 sliduye formula 8 pri x W 1 displaystyle chi Omega 1 nbsp sho i treba bulo dovesti Nam she zalishayetsya dovesti sho formula 54 maye misce i v zagalnomu vipadku vikrivlenogo mnogovida Viberemo sistemu koordinat na mnogovidi v okoli tochki P displaystyle P nbsp taku sho metrichnij tenzor g i j displaystyle g ij nbsp v tochci P displaystyle P nbsp zapisuyetsya odinichnoyu matriceyu d i j displaystyle delta ij nbsp a simvoli Kristofelya G i j s displaystyle Gamma ij s nbsp v cij tochci dorivnyuyut nulyu Danu sistemu koordinat u 1 u 2 displaystyle u 1 u 2 nbsp mozhna rozglyadati yak difeomorfne vidobrazhennya mizh oblastyu mnogovidu ta oblastyu ploshini kartoyu v yakij cya sistema koordinat ye dekartovoyu Poznachimo d t displaystyle dt nbsp element dovzhini krivoyi na karti d t u 1 2 u 2 2 displaystyle qquad dt sqrt u 1 2 u 2 2 nbsp a bukvoyu z tildoyu k g displaystyle tilde k g nbsp geodezichnu krivinu krivoyi na karti Todi 55 k g e i j t i k j e i j d u i d s d 2 u j d s 2 G k l j d u k d s d u l d s displaystyle 55 qquad k g varepsilon ij tau i k j varepsilon ij du i over ds left d 2 u j over ds 2 Gamma kl j du k over ds du l over ds right nbsp 56 k g d t e i j u i u j d t displaystyle 56 qquad tilde k g dt hat varepsilon ij dot u i ddot u j dt nbsp 57 k g d s g s 2 e i j u i u j G k l j u k u l d t displaystyle 57 qquad k g ds sqrt g over dot s 2 hat varepsilon ij dot u i left ddot u j Gamma kl j dot u k dot u l right dt nbsp Krapkami poznacheno pohidni po parametru t displaystyle t nbsp Iz dvoh ostannih formul uzhe mozhna zrobiti visnovok pro odnakovist z tochnistyu do neskinchenno malih dodankiv dvoh integraliv vid geodezichnoyi krivini po duzi A B displaystyle AB nbsp odin z yakih beretsya po mnogovidu a drugij po karti A B k g d s A B k g d t displaystyle qquad int smile AB k g ds simeq int smile AB tilde k g dt nbsp ale dlya cogo potribni dva dodatkovih pripushennya shob unemozhliviti nadmirnu dovzhinu dugi A B displaystyle AB nbsp za rahunok oscilyacij abo zakruchuvan u spiral A same pripustimo sho znak geodezichnoyi na duzi A B displaystyle AB nbsp ye postijnij a takozh sho duga A B displaystyle AB nbsp ne maye inshih spilnih tochok z krivolinijnim kutom okrim svoyih kinciv Dijsno mnozhnik g s 2 g g 11 cos 2 a 2 g 12 cos a sin a g 22 sin 2 a 1 displaystyle qquad sqrt g over dot s 2 sqrt g over g 11 cos 2 alpha 2g 12 cos alpha sin alpha g 22 sin 2 alpha to 1 nbsp pryamuye do odinici a simvoli Kristofelya do nulya vnaslidok specialnogo viboru sistemi koordinat Otzhe i v zagalnomu vipadku spravedliva granicya 54 a tomu dlya prostoyi oblasti dovedeno variant formuli 8 58 W K d s L k g d s i ϕ i 2 p displaystyle 58 qquad iint Omega Kd sigma oint L k g ds sum i phi i 2 pi nbsp Tretij etap dovedennya red Rozib yemo topologichno skladnu oblast W displaystyle Omega nbsp na skinchennu kilkist prostih pidoblastej W i displaystyle Omega i nbsp do kozhnoyi z yakih mozhna zastosuvati formulu 58 nbsp Rozbivka na prosti pidoblastiHarakteristika Ejlera obchislyuyetsya za formuloyu 9 x B P G displaystyle qquad chi B P Gamma nbsp de B P G displaystyle B P Gamma nbsp poznachayut kilkosti vershin reber ta granej pidoblastej W i displaystyle Omega i nbsp Dlya prostoti dovedennya budemo vvazhati vsi rebra oderzhanogo grafu gladkimi krivimi a vsi zlami na konturah vidbuvayutsya pri vershinah grafu Zruchno rozglyadati vnutrishni kuti a i j displaystyle alpha ij nbsp pri vsih vershinah grafu Tut pershij indeks i displaystyle i nbsp numeruye vsi vershini yak vnutrishni tak i ti sho lezhat na mezhi W displaystyle partial Omega nbsp oblasti W displaystyle Omega nbsp Drugij indeks j displaystyle j nbsp numeruye kuti pri vershini A i displaystyle A i nbsp Zlam ϕ i j displaystyle phi ij nbsp pri vershini ye dopovnennyam do vnutrishnogo kuta ϕ i j p a i j displaystyle phi ij pi alpha ij nbsp i mi mozhemo znajti sumu formul 58 dlya vsih pidoblastej W i displaystyle Omega i nbsp 59 2 p G W i W i K d s L i L i k g d s A i j p a i j displaystyle 59 qquad 2 pi Gamma sum Omega i iint Omega i Kd sigma sum L i int L i k g ds sum A i sum j pi alpha ij nbsp Rozberemosya z kozhnim iz troh dodankiv u pravij chastini formuli 59 Pershij dodanok ochevidno dorivnyuye integralu po cilij oblasti W displaystyle Omega nbsp 60 W K d s W i W i K d s displaystyle 60 qquad iint Omega Kd sigma sum Omega i iint Omega i Kd sigma nbsp V drugomu dodanku treba rozriznyati zovnishni rebra L i W displaystyle L i in partial Omega nbsp yaki lezhat na mezhi vid vnutrishnih Integruvannya po vnutrishnomu rebru vidbuvayetsya dvichi pri rozglyadi dvoh sumizhnih pidoblastej sho rozdilyayutsya danim rebrom Prichomu proyekciyi geodezichnoyi krivini budut protilezhnimi k g k g n k g n k g displaystyle qquad k g mathbf k g cdot mathbf n mathbf k g cdot mathbf n k g nbsp A otzhe vsi integrali po vnutrishnih rebrah vzayemno kompensuyutsya i v sumi 59 lishayutsya tilki integrali po zovnishnih rebrah 61 L i L i k g d s L i W L i k g d s displaystyle 61 qquad sum L i int L i k g ds sum L i in partial Omega int L i k g ds nbsp Perejdemo do rozglyadu tretogo dodanka formuli 59 Dlya kozhnoyi vnutrishnoyi vershini mayemo 62 j p a i j p r i 2 p displaystyle 62 qquad sum j pi alpha ij pi rho i 2 pi nbsp de r i displaystyle rho i nbsp kilkist kinciv vnutrishnih reber sho shodyatsya v cij vershini Dlya vershini na mezhi oblasti W displaystyle Omega nbsp mayemo 63 j p a i j p r i p A i p r i ϕ i displaystyle 63 qquad sum j pi alpha ij pi rho i pi hat A i pi rho i phi i nbsp de r i displaystyle rho i nbsp takozh yak i v poperednij formuli poznachaye kilkist kinciv vnutrishnih reber sho shodyatsya u vershini A i displaystyle A i nbsp a ϕ i displaystyle phi i nbsp poznachaye kut na yakij povertayetsya dotichnij do liniyi mezhi vektor pri perehodi cherez tochku A i displaystyle A i nbsp Oskilki kozhne rebro maye dva kincya to suma vsih cih kinciv dorivnyuye podvoyenij kilkosti vnutrishnih reber 64 i r i 2 P int displaystyle 64 qquad sum i rho i 2P mbox int nbsp i mi mozhemo zapisati dlya tretogo dodanka 65 A i j p a i j 2 p P int B int A i W ϕ i displaystyle 65 qquad sum A i sum j pi alpha ij 2 pi left P mbox int B mbox int right sum A i in partial Omega phi i nbsp Ochevidno sho mezha W displaystyle partial Omega nbsp skladayetsya z dekilkoh konturiv gomeomeorfnih kolu Na kozhnomu takomu konturi a otzhe i na vsij mezhi W displaystyle partial Omega nbsp kilkist vershin B W displaystyle B partial Omega nbsp i kilkist reber P W displaystyle P partial Omega nbsp odnakova Mayemo 66 P int B int P int P W B int B W P B displaystyle 66 qquad P mbox int B mbox int left P mbox int P partial Omega right left B mbox int B partial Omega right P B nbsp Pidstavimo formuli 60 61 65 i 66 v 59 Oderzhuyemo 67 2 p G W K d s L i W L i k g d s A i W ϕ i 2 p P B displaystyle 67 qquad 2 pi Gamma iint Omega Kd sigma sum L i in partial Omega int L i k g ds sum A i in partial Omega phi i 2 pi P B nbsp sho ye ekvivalentom formuli 8 Teoremu povnistyu dovedeno Istoriya red Okremij vipadok ciyeyi formuli dlya geodezichnih trikutnikiv buv otrimanij Gausom prote vin ne opublikuvav yiyi V 1848 roci yiyi opublikuvav francuzkij matematik Bonne P yer Osiyan yakij uzagalniv formulu na vipadok diska obmezhenogo dovilnoyu krivoyu U suchasnomu formulyuvanni formula vpershe z yavlyayetsya u Vilgelma Blyashke Otrimano z https uk wikipedia org w index php title Formula Gausa Bonne amp oldid 38713044