www.wikidata.uk-ua.nina.az
Teo riya pru zhnosti rozdil mehaniki sucilnih seredovish sho vivchaye deformaciyi i napruzhennya v tilah kotri perebuvayut u spokoyi abo ruhayutsya pid diyeyu navantazhen Zmist 1 Zavdannya teoriyi pruzhnosti 2 Osnovni ponyattya teoriyi pruzhnosti 3 Granichni umovi 4 Div takozh 5 Dzherela 6 Literatura 7 PosilannyaZavdannya teoriyi pruzhnosti RedaguvatiZadacheyu ciyeyi teoriyi ye zapis matematichnih rivnyan rozv yazannya yakih dozvolyaye vidpovisti na taki zapitannya yakimi budut deformaciyi konkretnogo tila yaksho do nogo priklasti u vidomih miscyah navantazhennya zadanoyi velichini yakimi budut pri comu napruzhennya v tili Pitannya chi tilo zrujnuyetsya chi vitrimaye ci navantazhennya tisno pov yazani z teoriyeyu pruzhnosti ale strogo kazhuchi ne vhodit u yiyi kompetenciyu Prikladiv mozhna navesti bezlich vid viznachennya deformacij i napruzhen v navantazhenij balci na oporah do rozrahunku cih zhe parametriv v korpusi litaka raketi pidvodnogo chovna u kolesi vagona v broni tanka pri udari snaryada v girskomu masivi pri prokladenni shtolni v karkasi visotnoyi budivli i tak dali Dlya vipadku inzhenernih zadach napruzhennya i deformaciyi v konstrukciyah rozrahovuyut za sproshenimi teoriyami sho logichno bazuyutsya na teoriyi pruzhnosti Do takih teorij vidnosyatsya opir materialiv zavdannyam yakogo ye rozrahunok strizhniv i balok a takozh ocinka napruzhen sho vinikayut u zonah kontaktnoyi vzayemodiyi tverdih til budivelna mehanika rozrahunok strizhnevih sistem napriklad mostiv i teoriya obolonok samostijna i dobre rozvinena galuz nauki pro deformaciyi i napruzhennya predmetom doslidzhennya yakoyi ye tonkostinni obolonki cilindrichni konichni sferichni i skladnishi formi Osnovni ponyattya teoriyi pruzhnosti Redaguvati nbsp Rozpodil napruzhen na ploshinkah elementarnogo paralelepipedaOsnovnimi ponyattyami teoriyi pruzhnosti ye napruzhennya sho diyut na malih ploshinkah kotri mozhna uyavno provesti v tili cherez zadanu tochku P deformaciyi maloyi okolici tochki P i peremishennya samoyi tochki P Tochnishe kazhuchi vvodyatsya tenzor mehanichnih napruzhen s i j displaystyle sigma ij nbsp tenzor malih deformacij e i j displaystyle varepsilon ij nbsp i vektor peremishennya ui Korotke poznachennya s i j displaystyle sigma ij nbsp de indeksi i j nabuvayut znachen 1 2 3 abo x y z slid rozumiti yak matricyu u vidah s i j s 11 s 12 s 13 s 21 s 22 s 23 s 31 s 32 s 33 s x x s x y s x z s y x s y y s y z s z x s z y s z z displaystyle boldsymbol sigma ij begin bmatrix sigma 11 amp sigma 12 amp sigma 13 sigma 21 amp sigma 22 amp sigma 23 sigma 31 amp sigma 32 amp sigma 33 end bmatrix left begin matrix sigma xx amp sigma xy amp sigma xz sigma yx amp sigma yy amp sigma yz sigma zx amp sigma zy amp sigma zz end matrix right nbsp Analogichno slid rozumiti i korotke poznachennya tenzora e i j displaystyle varepsilon ij nbsp Yaksho fizichna tochka tila M vnaslidok deformaciyi zajnyala nove polozhennya v prostori P to vektor peremishennya ye vektor P P displaystyle mathbf PP nbsp z komponentami ux uy uz abo skorocheno ui U teoriyi malih deformacij komponenti ui i e i j displaystyle varepsilon ij nbsp vvazhayutsya malimi velichinami strogo kazhuchi neskinchenno malimi Komponenti tenzora e i j displaystyle varepsilon ij nbsp yakij takozh maye nazvu tenzor deformaciyi Koshi abo linijnij tenzor deformaciyi i vektora ui pov yazani zalezhnostyami e i j 1 2 u i j u j i e x x e x y e x z e y x e y y e y z e z x e z y e z z u x x 1 2 u x y u y x 1 2 u x z u z x 1 2 u y x u x y u y y 1 2 u y z u z y 1 2 u z x u x z 1 2 u z y u y z u z z displaystyle varepsilon ij frac 1 2 left u i j u j i right left begin matrix varepsilon xx amp varepsilon xy amp varepsilon xz varepsilon yx amp varepsilon yy amp varepsilon yz varepsilon zx amp varepsilon zy amp varepsilon zz end matrix right left begin matrix frac partial u x partial x amp frac 1 2 left frac partial u x partial y frac partial u y partial x right amp frac 1 2 left frac partial u x partial z frac partial u z partial x right frac 1 2 left frac partial u y partial x frac partial u x partial y right amp frac partial u y partial y amp frac 1 2 left frac partial u y partial z frac partial u z partial y right frac 1 2 left frac partial u z partial x frac partial u x partial z right amp frac 1 2 left frac partial u z partial y frac partial u y partial z right amp frac partial u z partial z end matrix right nbsp Z ostannogo zapisu vidno sho e i j e j i displaystyle varepsilon ij varepsilon ji nbsp tomu tenzor deformaciyi ye simetrichnim za viznachennyam Yaksho pruzhne tilo pid diyeyu zovnishnih sil perebuvaye u rivnovazi tobto shvidkosti usih jogo tochok dorivnyuyut nulyu to v rivnovazi perebuvaye i bud yaka chastina tila yaku uyavno mozhna z nogo vidiliti Z tila vidilyayetsya neskinchenno malij pryamokutnij paralelepiped grani yakogo paralelni koordinatnim ploshinam dekartovoyi sistemi Z umovi rivnovagi paralelepipeda z rozmirami reber dx dy dz rozglyanuvshi umovi rivnovagi sil v proyekciyah mozhna otrimati s x x x s x y y s x z z F x 0 s y x x s y y y s y z z F y 0 s x x x s z y y s z z z F z 0 displaystyle begin aligned amp frac partial sigma xx partial x frac partial sigma xy partial y frac partial sigma xz partial z F x 0 amp frac partial sigma yx partial x frac partial sigma yy partial y frac partial sigma yz partial z F y 0 amp frac partial sigma xx partial x frac partial sigma zy partial y frac partial sigma zz partial z F z 0 end aligned nbsp Analogichno vihodyat rivnyannya rivnovagi sho virazhayut rivnist nulyu golovnogo momentu usih sil sho diyut na paralelepiped yaki privodyatsya do vidu s x y s y x s y z s z y s z x s x x displaystyle sigma xy sigma yx sigma yz sigma zy sigma zx sigma xx nbsp Cya rivnist oznachaye sho tenzor napruzhen ye simetrichnim tenzor i chislo nevidomih komponent tenzora napruzhen zvoditsya do 6 Ye lishe tri rivnyannya rivnovagi tobto rivnyan statiki nedostatno dlya rozv yazannya zadachi Vihid z polozhennya polyagaye v tomu shob viraziti napruzhennya s i j displaystyle sigma ij nbsp cherez deformaciyi e i j displaystyle varepsilon ij nbsp za dopomogoyu rivnyan zakonu Guka a potim deformaciyi e i j displaystyle varepsilon ij nbsp viraziti cherez peremishennya ui za dopomogoyu formul Koshi i rezultat pidstaviti u rivnyannya rivnovagi Pri comu vihodit tri diferencialni rivnyannya rivnovagi vidnosno troh nevidomih funkcij ux uy uz tobto chislo nevidomih bude vidpovidati chislu rivnyan Ci rivnyannya nazivayutsya rivnyannyami Nav ye Koshi l m x u x x u y y u z z m 2 u x x 2 2 u x y 2 2 u x z 2 F x 0 displaystyle left lambda mu right frac partial partial x left frac partial u x partial x frac partial u y partial y frac partial u z partial z right mu left frac partial 2 u x partial x 2 frac partial 2 u x partial y 2 frac partial 2 u x partial z 2 right F x 0 nbsp l m y u x x u y y u z z m 2 u y x 2 2 u y y 2 2 u y z 2 F y 0 displaystyle left lambda mu right frac partial partial y left frac partial u x partial x frac partial u y partial y frac partial u z partial z right mu left frac partial 2 u y partial x 2 frac partial 2 u y partial y 2 frac partial 2 u y partial z 2 right F y 0 nbsp l m z u x x u y y u z z m 2 u z x 2 2 u z y 2 2 u z z 2 F z 0 displaystyle left lambda mu right frac partial partial z left frac partial u x partial x frac partial u y partial y frac partial u z partial z right mu left frac partial 2 u z partial x 2 frac partial 2 u z partial y 2 frac partial 2 u z partial z 2 right F z 0 nbsp de koeficiyenti Lame l E n 1 n 1 2 n displaystyle lambda frac E nu 1 nu 1 2 nu nbsp m E 2 1 n displaystyle mu frac E 2 1 nu nbsp Granichni umovi RedaguvatiRozv yazannya zadach teoriyi pruzhnosti zvoditsya do integruvannya sistemi diferencialnih rivnyan u chastinnih pohidnih sho viznachayut povedinku pruzhnogo tila u vnutrishnih tochkah Do cih rivnyan dodayutsya umovi na poverhni sho obmezhuye tilo Ci umovi viznachayut zadannya abo zovnishnih poverhnevih sil abo peremishen tochok poverhni tila Zalezhno vid cogo zazvichaj formulyuyut odin iz troh tipiv krajovih zadach Persha krajova zadacha kinematichna V ob yemi tila vidshukuyutsya skladovi peremishen sho nabuvayut na poverhni pevnih znachen V umovi na poverhni tila v takij sposib zadayutsya rivnyannya poverhni j znachennya skladovih peremishen na nij Druga krajova zadacha statichna U comu vipadku na poverhni tila ne nakladeni zhodni obmezhennya na peremishennya i zadayutsya rivnyannya poverhni sho napravlyayut kosinusi normali do poverhni j znachennya skladovih poverhnevih navantazhen U vipadku koli poverhnya tila zbigayetsya z koordinatnimi ploshinami granichni umovi mozhut buti sformulovani bezposeredno v napruzhennyah Todi dostatno vkazati rivnyannya poverhni j zadati znachennya skladovih napruzhen na nij Tretya krajova zadacha zmishana U comu vipadku na odnij chastini poverhni tila zadayutsya kinematichni umovi a na inshij statichni Cimi troma zadachami ne vicherpuyetsya vsya rozmayitist granichnih umov Napriklad na deyakij dilyanci poverhni mozhut buti zadani ne vsi tri skladovi peremishennya abo skladovi poverhnevogo navantazhennya Div takozh RedaguvatiZakon Guka Pruzhnist Pruzhni sili Tenzor mehanichnih napruzhen Tenzor deformaciyi Moduli pruzhnosti Deformivne tiloDzherela RedaguvatiBozhidarnik V V Sulim G T Elementi teoriyi pruzhnosti Lviv Svit 1994 560 c ISBN 5 7773 0109 6 Timoshenko S P Guder Dzh Teoriya uprugosti M Nauka 1979 560 s Literatura RedaguvatiDeformativnist neodnoridnih transversalno izotropnih materialiv Ya I Sokolovskij T I Bubnyak Lviv derzh agrar un t L 1999 196 c Bibliogr 150 nazv Posilannya RedaguvatiTeoriya pruzhnosti nedostupne posilannya z lipnya 2019 Elektronnij navchalnij kurs Otrimano z https uk wikipedia org w index php title Teoriya pruzhnosti amp oldid 36408850