www.wikidata.uk-ua.nina.az
Tenzor energiyi impulsu simetrichnij 4 tenzor viznachenij u prostori chasi yakij vodnochas zadaye gustinu energiyi ta yiyi potokiv i viznachaye zakon zmini cih velichin pri perehodi vid odniyeyi sistemi vidliku do inshoyi Tenzor energiyi impulsu v zagalnomu vipadku maye viglyad 1 T W S x c S y c S z c S x c s x x s x y s x z S y c s y x s y y s y z S z c s z x s z y s z z displaystyle T left begin matrix W amp S x c amp S y c amp S z c S x c amp hat sigma xx amp hat sigma xy amp hat sigma xz S y c amp hat sigma yx amp hat sigma yy amp hat sigma yz S z c amp hat sigma zx amp hat sigma zy amp hat sigma zz end matrix right de W gustina energiyi S i displaystyle S i potik energiyi v napryamku yakij zadayetsya koordinatoyu i s i j r v i v j s i j displaystyle hat sigma ij rho v i v j sigma ij de s i j displaystyle sigma ij tenzor u zvichajnomu prostori yakij nazivayut tenzorom napruzhen Dlya tenzora energiyi impulsu spravedlive spivvidnoshennya T i k x k 0 displaystyle frac partial T i k partial x k 0 yake ye lokalnim virazom zakoniv zberezhennya energiyi ta impulsu Ochevidna takozh simetriya tenzora energiyi impulsu T i j displaystyle T ij shodo perestanovok indeksiv Cya vlastivist virazhaye lokalnij zakon zberezhennya momentu impulsu Znachennya tenzora energiyi impulsu v tomu sho vin vhodit do osnovnogo rivnyannya zagalnoyi teoriyi vidnosnosti rivnyannya Ejnshtejna i takim chinom dozvolyaye dopovniti ci rivnyannya rivnyannyami stanu rechovini Zmist 1 Klasichnij rozglyad neperervnoyi rechovini 2 Relyativistskij rozglyad neperervnoyi rechovini 3 Zakon zberezhennya energiyi ta impulsu 4 Lokalnij zakon zberezhennya energiyi ta impulsu 5 Lokalnij zakon zberezhennya momentu impulsu 6 Dzherela 7 PrimitkiKlasichnij rozglyad neperervnoyi rechovini RedaguvatiV klasichnij mehanici ruh neperervnoyi rechovini opisuye gidrodinamika i teoriya pruzhnosti tverdih til Kozhna chastinka rechovini v tochci 3 vimirnogo prostoru x y z i v deyakij moment chasu t opisuyetsya gustinoyu 1 r r x y z t d m d V displaystyle 1 qquad rho rho x y z t dm over dV nbsp a takozh shvidkistyu v cij tochci 2 v v x y z t displaystyle 2 qquad mathbf v mathbf v x y z t nbsp i tenzorom napruzhen s a b displaystyle sigma alpha beta nbsp yakij opisuye silovu vzayemodiyu chastinki rechovini z susidnimi chastinkami 3 s a b s a b x y z t displaystyle 3 qquad sigma alpha beta sigma alpha beta x y z t nbsp U vipadku ridini chi gazu tenzor napruzhen diagonalnij i virazhayetsya cherez tisk p displaystyle p nbsp formuloyu 4 s a b p d a b displaystyle 4 qquad sigma alpha beta p delta alpha beta nbsp tobto tisk diye v usih napryamkah odnakovo zakon Paskalya Relyativistskij rozglyad neperervnoyi rechovini RedaguvatiYak vidomo energiya ta impuls povinni rozglyadatisya v poyednanni zi shvidkistyu sho opisuyetsya chotiri vektorom energiyi impulsu 6 p a E c p x p y p z displaystyle 6 qquad p alpha left E over c p x p y p z right nbsp Oskilki rechovina rozmazana v prostori vidilimo v yakijs moment chasu t t 0 displaystyle t t 0 nbsp element ob yemu D V displaystyle Delta V nbsp Velichina chotiri vektora energiyi impulsu D p a displaystyle Delta p alpha nbsp dlya chastini rechovini sho potrapila v cej ob yem proporcijna samomu ob yemu z deyakimi koeficiyentami proporcijnosti r a displaystyle tilde rho alpha nbsp 7 D p a r a D V displaystyle 7 qquad Delta p alpha tilde rho alpha Delta V nbsp Liva chastina cogo rivnyannya ye chotiri vektorom Doslidimo z tochki zoru tenzornogo analizu sho soboyu yavlyaye dobutok v pravij chastini rivnyannya Pochnemo z trivimirnogo ob yemu D V displaystyle Delta V nbsp predstavivshi jogo u viglyadi paralelepipeda pobudovanogo na troh vektorah a b c displaystyle mathbf a mathbf b mathbf c nbsp Ci vektori mozhna vvazhati chotiri vektorami z nulovoyu pershoyu chasovoyu koordinatoyu Ob yem ye velichinoyu tenzora tretogo rangu sho skladenij zovnishnim dobutkom cih vektoriv 8 D V a b g a b c a b g displaystyle 8 qquad Delta V alpha beta gamma left mathbf a wedge mathbf b wedge mathbf c right alpha beta gamma nbsp Koristuyuchis odinichnim antisimetrichnim tenzorom mi mozhemo takozh sklasti dualnij chotiri vektor 9 D V l i e l a b g a a b b c g g e l a b g a a b b c g displaystyle 9 qquad Delta V lambda i varepsilon lambda alpha beta gamma a alpha b beta c gamma sqrt g hat varepsilon lambda alpha beta gamma a alpha b beta c gamma nbsp de g determinant metrichnogo tenzora V cij formuli mnozhnik uyavnoyi odinici vvedeno dlya togo shob komponenti vektora D V l displaystyle Delta V lambda nbsp buli dijsnimi chislami Velichina cogo vektora dorivnyuye ob yemu D V displaystyle Delta V nbsp a napryam ortogonalnij do skladovih vektoriv a b c displaystyle mathbf a mathbf b mathbf c nbsp Tobto u vibranij sistemi koordinat vin napryamlenij vzdovzh osi chasu 10 D V l D V c 0 0 0 displaystyle 10 qquad Delta V lambda left Delta V over c 0 0 0 right nbsp Teper mi mozhemo zminyuyuchi pri potrebi poznachennya koeficiyentiv r a displaystyle tilde rho alpha nbsp perepisati formulu 7 tak 11 D p a r a 0 D V 0 c c r a 0 D V 0 c r a 1 D V 1 c r a 2 D V 2 c r a 3 D V 3 displaystyle 11 qquad Delta p alpha tilde rho alpha 0 Delta V 0 over c c tilde rho alpha 0 Delta V 0 c tilde rho alpha 1 Delta V 1 c tilde rho alpha 2 Delta V 2 c tilde rho alpha 3 Delta V 3 nbsp U cij formuli mi spochatku veli she odin indeks nul u poznachenni koeficiyentiv a potim chisto formalno dodali she tri nulovi dodanki oskilki zgidno z 10 prostorovi komponenti vektora D V displaystyle Delta V nbsp dorivnyuyut nulyu Prava chastina formuli 11 maye viglyad dobutku shvidkosti svitla na zgortku tenzora drugogo rangu z vektorom Poznachimo tenzor T a b c r a b displaystyle T alpha beta c tilde rho alpha beta nbsp i nazvemo jogo tenzorom energiyi impulsu Todi chotiri vektor energiyi impulsu rechovini yaka potrapila v element ob yemu D V displaystyle Delta V nbsp zgidno z formuloyu 11 zapishetsya u viglyadi zgortki tenzora energiyi impulsu z chotirivektorom ob yemu 12 D p a T a b D V b displaystyle 12 qquad Delta p alpha T alpha beta Delta V beta nbsp Rozpisuyuchi pokomponentno formulu 12 i vrahovuyuchi 6 znahodimo sho koli a 0 displaystyle alpha 0 nbsp 13 D E c T 00 D V 0 T 00 D V c displaystyle 13 qquad Delta E over c T 00 Delta V 0 T 00 Delta V over c nbsp 13 a T 00 D E D V displaystyle 13a qquad T 00 Delta E over Delta V nbsp tobto verhnij livij element matrici T displaystyle T nbsp maye smisl gustini energiyi Teper pririvnyayemo indeks a displaystyle alpha nbsp odnij z prostorovih koordinat napriklad a 1 displaystyle alpha 1 nbsp Todi 14 D p 1 T 10 D V 0 T 10 D V c displaystyle 14 qquad Delta p 1 T 10 Delta V 0 T 10 Delta V over c nbsp Zvidki mi mozhemo viraziti T 10 displaystyle T 10 nbsp dvoma sposobami beruchi do uvagi zv yazok impulsu z masoyu D p 1 D m v 1 displaystyle Delta p 1 Delta mv 1 nbsp ta formulu Ejnshtejna D E D m c 2 displaystyle Delta E Delta mc 2 nbsp 15 T 10 c D p 1 D V 1 c v 1 D E D V displaystyle 15 qquad T 10 c Delta p 1 over Delta V 1 over c v 1 Delta E over Delta V nbsp Vidpovidno mayemo dva traktuvannya komponenti T 10 displaystyle T 10 nbsp abo gustina proyekciyi impulsu pomnozhena na shvidkist svitla abo potik energiyi v napryamku osi abscis podilenij na shvidkist svitla Zakon zberezhennya energiyi ta impulsu RedaguvatiV klasichnij mehanici sukupnij impuls sistemi fizichnih til i elektromagnitnogo polya zberigayetsya tobto ne zminyuyetsya z chasom Te same stosuyetsya energiyi yaksho rozglyadati diyu tilki konservativnih sil Sprobuyemo z yasuvati yak ci zakoni zberezhennya vidobrazhayutsya v teoriyi vidnosnosti na vlastivostyah tenzora energiyi impulsu Pochnemo z togo sho energiya i impuls utvoryuyut chotiri vektor 6 Operaciyu dodavannya dvoh prostorovo roznesenih vektoriv mozhna zdijsniti zdijsnivshi paralelne perenesennya odnogo vektora v tochku znahodzhennya inshogo Taka operaciya bude odnoznachnoyu lishe dlya ploskogo prostoru z nulovim tenzorom Rimana Otzhe pochnemo z rozglyadu nevelikoyi obmezhenoyi v prostori mehanichnoyi sistemi gravitacijnim polem yakoyi a otzhe i vikrivlennyam prostoru mozhna znehtuvati Dlya cogo treba shob usi masi til buli dosit malimi Sistemu koordinat budemo vvazhati pryamokutnoyu dekartovoyu Viberemo fiksovanij moment chasu t t 1 displaystyle t t 1 nbsp i znajdemo sukupnij chotiri vektor energiyi impulsu sistemi prointegruvavshi formulu 12 po vsomu trivimirnomu prostoru yakij ye giperploshinoyu v chotirivimirnomu prostori chasi 16 P i 1 t t 1 T i 0 d V 0 displaystyle 16 qquad P i 1 int t t 1 T i0 dV 0 nbsp V inshij moment chasu t t 2 displaystyle t t 2 nbsp chotiri vektor energiyi impulsu zalishitsya nezminnim i nulovu riznicyu mi mozhemo zapisati u viglyadi integrala po chotirivimirnomu prosharku mizh dvoma giperploshinami 17 0 P i 2 P i 1 T i 0 t 2 T i 0 t 1 d V 0 T i 0 t d t d V 0 T i 0 x 0 d t displaystyle 17 qquad 0 P i 2 P i 1 int left T i0 big t 2 T i0 big t 1 right dV 0 int partial T i0 over partial t dtdV 0 int partial T i0 over partial x 0 d tau nbsp V ostannomu integrali diferencial d t displaystyle d tau nbsp ye invariantnim elementom chotirivimirnogo ob yemu div Integruvannya po ob yemu mnogovida 18 d t d c t d V 0 d x 0 d V 0 g d x 0 d x 1 d x 2 d x 3 displaystyle 18 qquad d tau d ct dV 0 dx 0 dV 0 sqrt g dx 0 dx 1 dx 2 dx 3 nbsp Oskilki vsi fizichni zakoni mayut nositi tenzornij harakter a otzhe ne zalezhati vid viboru sistemi koordinat to i pidintegralnu funkciyu v pravij chastini 17 mi povinni zaminiti na istinnij skalyar 19 j T i j g j k T i j x k T i 0 x 0 T i 1 x 1 T i 2 x 2 T i 3 x 3 displaystyle 19 qquad nabla j T ij g jk partial T ij over partial x k partial T i0 over partial x 0 partial T i1 over partial x 1 partial T i2 over partial x 2 partial T i3 over partial x 3 nbsp diferencialnij operator j g j k k displaystyle nabla j g jk nabla k nbsp nazivayetsya nabla abo kovariantna pohidna div stattyu Diferencialna geometriya viznachenij navit dlya krivogo prostoru formuloyu 20 j T i j g j k k T i j g j k T i j x k G k i s T s j G k j s T i s displaystyle 20 qquad nabla j T ij g jk nabla k T ij g jk left partial T ij over partial x k Gamma ki s T sj Gamma kj s T is right nbsp U vipadku metriki Minkovskogo 21 g i j g i j 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 displaystyle 21 qquad g ij g ij begin pmatrix 1 amp 0 amp 0 amp 0 0 amp 1 amp 0 amp 0 0 amp 0 amp 1 amp 0 0 amp 0 amp 0 amp 1 end pmatrix nbsp metrichnij tenzor virazhayetsya diagonalnoyu matriceyu z postijnimi koeficiyentami tomu simvoli Kristofelya v formuli 20 dorivnyuyut nulyu chim mi i skoristalisya v peretvorennyah formuli 19 Perevirimo sho zajvi tri dodanki v 19 ne psuyut rivnosti 17 Oskilki nasha mehanichna sistema obmezhena v trivimirnomu prostori to mi mozhemo vzyati dostatno velikij trivimirnij pryamokutnij paralelepiped 22 P x 1 lt x lt x 2 y 1 lt y lt y 2 z 1 lt z lt z 2 displaystyle 22 qquad P left x 1 lt x lt x 2 y 1 lt y lt y 2 z 1 lt z lt z 2 right nbsp v yakomu povnistyu mistitsya sistema v rozlyaduvanomu intervali chasu t t 1 t 2 displaystyle t in left t 1 t 2 right nbsp Ce zokrema oznachaye sho za mezhami paralelepipeda P displaystyle P nbsp a takozh na jogo stinkah tenzor energiyi impulsu T i j displaystyle T ij nbsp razom zi svoyimi pohidnimi T i j x k displaystyle partial T ij over partial x k nbsp peretvoryuyetsya v nul Tomu zamist formuli 17 mi mozhemo obmezhiti oblast integruvannya paralelepipedom P displaystyle P nbsp i perejti vid kratnogo do povtornogo integrala 23 P j T i j d t t 1 t 2 d c t x 1 x 2 d x y 1 y 2 d y z 1 z 2 j T i j d z displaystyle 23 qquad int P nabla j T ij d tau int t 1 t 2 d ct int x 1 x 2 dx int y 1 y 2 dy int z 1 z 2 nabla j T ij dz nbsp Yaksho mi v samij vnutrishnij integral 23 pidstavimo ostannij dodanok formuli 19 to oderzhimo nul 24 z 1 z 2 T i 3 z d z T i 3 z 2 T i 3 z 1 0 displaystyle 24 qquad int z 1 z 2 partial T i3 over partial z dz T i3 big z 2 T i3 big z 1 0 nbsp oskilki na granyah paralelepipeda P displaystyle P nbsp tenzor energiyi impulsu peretvoryuyetsya v nul Analogichno i integral vid serednih dvoh dodankiv v formuli 19 dorivnyuye nulyu Takim chinom zakon zberezhennya energiyi ta impulsu virazhayetsya formuloyu 25 j T i j d t 0 displaystyle 25 qquad int nabla j T ij d tau 0 nbsp de integruvannya provoditsya v chotirivimirnomu prostori mizh dvoma trivimirnimi giperploshinami Lokalnij zakon zberezhennya energiyi ta impulsu RedaguvatiFormulu 25 ne mozhna zastosovuvati v krivomu prostori po pershe vektori u viddalenih tochkah ne mozhna dodavati vnaslidok neodnoznachnosti paralelnogo perenosu vektoriv a po druge neyasno chim mozhna zaminiti paralelni giperploshini v krivomu prostori Okrim togo integralnij zakon zberezhennya ne nakladaye intuyitivno zrozumilogo obmezhennya na ruh materiyi vona a takozh energiya i impuls ne mozhe pereskakuvati z odnoyi tochki prostoru u viddalenu tochku voni mozhut lishe plavno peretikati cherez susidni tochki prostoru Napriklad energiya ne mozhe potrapiti z elektrostanciyi v lampochku cherez obirvani provoda Cim mi slovesno opisali lokalnist zakoniv zberezhennya energiyi impulsu Zvernemos do formul V deyakij tochci mozhna vikrivlenogo prostoru chasu viberemo sistemu koordinat O t x y z displaystyle Otxyz nbsp sho ye dekartovoyu v danij tochci i v nij zadamo malenkij porivnyano z radiusami krivini prostoru ta koordinatnih linij chotirivimirnij pryamokutnij paralelepiped 26 P t t 1 t 2 x x 1 x 2 y y 1 y 2 z z 1 z 2 displaystyle 26 qquad P left t in t 1 t 2 x in x 1 x 2 y in y 1 y 2 z in z 1 z 2 right nbsp i zapishemo formulu Ostrogradskogo Gaussa dlya divergenciyi tenzora energiyi impulsu v comu paralelepipedi 27 P j T i j d t P T i j d V j displaystyle 27 qquad int P nabla j T ij d tau oint partial P T ij dV j nbsp v cij formuli cherez P displaystyle partial P nbsp poznachena trivimirna poverhnya paralelepipeda P displaystyle P nbsp yaka skladayetsya iz vosmi granej a integruvannya po cij poverhni vrahovuye napryam vektora normali yakij napryamlenij nazovni paralelepipeda P displaystyle P nbsp Dvi grani yaki mi dlya naochnosti nazvemo dnom i krishkoyu ye paralelepipedami v trivimirnomu prostori x y z displaystyle xyz nbsp vzyatimi vidpovidno v moment chasu t 1 displaystyle t 1 nbsp i t 2 displaystyle t 2 nbsp Tenzor energiyi impulsu yakbi vtikaye vseredinu paralelepipeda cherez dno i vitikaye cherez krishku Riznicya integraliv po cih dvoh granyah maye smisl zmini chotiri vektora energiyi impulsu v ob yemi D x D y D z displaystyle Delta x Delta y Delta z nbsp za chas D t displaystyle Delta t nbsp 28 D p i t 2 T i 0 d V 0 t 2 T i 0 d V 0 displaystyle 28 qquad Delta p i int t 2 T i0 dV 0 int t 2 T i0 dV 0 nbsp Ochevidno cya zmina povinna potrapiti v trivimirnij ob yem D x D y D z displaystyle Delta x Delta y Delta z nbsp cherez poverhnyu cogo ob yemu Rozglyanemo pritik energiyi cherez gran x x 1 displaystyle x x 1 nbsp plosheyu D y D z displaystyle Delta y Delta z nbsp za interval chasu D t displaystyle Delta t nbsp 29 D E S x D x D y D t displaystyle 29 qquad Delta E approx S x Delta x Delta y Delta t nbsp de S x displaystyle S x nbsp shilnist potoku energiyi v napryamku osi abscis Porivnyayemo cej viraz z poverhnevim integralom v pravij chastini formuli 27 po vidpovidnij trivimirnij bichnij grani paralelepipeda P displaystyle P nbsp 30 D p 0 D E c x x 1 T 0 j d V j T 01 D V 1 T 01 D y D z D t displaystyle 30 qquad Delta p 0 Delta E over c int x x 1 T 0j dV j approx T 01 Delta V 1 T 01 Delta y Delta z Delta t nbsp Mi mozhemo viznachiti komponentu tenzora energiyi impulsu 31 T 0 i S i c displaystyle 31 qquad T 0i S i over c nbsp tak shob formuli 29 i 30 vidpovidali odna odnij Z formul 15 i 30 sliduye simetriya chastini komponent tenzora energiyi impulsu 32 T 0 i T i 0 displaystyle 32 qquad T 0i T i0 nbsp Teper rozglyanemo pritik impulsu cherez cyu samu gran x x 1 displaystyle x x 1 nbsp plosheyu D y D z displaystyle Delta y Delta z nbsp Vin skladayetsya z dvoh dodankiv po pershe cherez cyu gran protikaye materiya masoyu 33 D m r v x D t D y D z displaystyle 33 qquad Delta m rho v x Delta t Delta y Delta z nbsp yaka perenosit iz soboyu impuls 34 D p i 1 D m v i r v x v i D y D z D t displaystyle 34 qquad Delta p i 1 Delta mv i rho v x v i Delta y Delta z Delta t nbsp i po druge cherez cyu gran diye moment sili vid susidnoyi komirki prostoru cherez vnutrishni napruzhennya rechovini tisk 35 D p i 2 F i D t s i 1 D y D z D t displaystyle 35 qquad Delta p i 2 F i Delta t sigma i1 Delta y Delta z Delta t nbsp Sumarnij potik impulsu pririvnyayemo do potoku vidpovidnoyi komponenti tenzora energiyi impulsu 36 D p i r v x v i s i 1 D y D z D t T i 1 d V 1 displaystyle 36 qquad Delta p i left rho v x v i sigma i1 right Delta y Delta z Delta t T i1 dV 1 nbsp Takim chinom mi uzhe viznachili vsi komponenti tenzora energiyi impulsu cherez velichini klasichnoyi mehaniki prostorova chastina cogo tenzora dorivnyuye 37 T i j r v i v j s i j displaystyle 37 qquad T ij rho v i v j sigma ij nbsp Iz ciyeyi priv yazki i lokalnogo zakonu zberezhennya energiyi impulsu sliduye sho poverhnevij integral v livij chastini 27 dorivnyuye nulyu Oskilki paralelepiped P displaystyle P nbsp mozhe buti rozmishenij v bud yakij tochci prostoru chasu i mozhe buti neskinchenno malim z rivnosti nulyu pravoyi chastini 27 sliduye sho skriz divergenciya tenzora energiyi impulsu dorivnyuye nulyu 38 j T i j 0 displaystyle 38 qquad nabla j T ij 0 nbsp Lokalnij zakon zberezhennya momentu impulsu RedaguvatiIz virazu dlya komponent tenzora energiyi impulsu mi bachimo sho cej tenzor vijshov simetrichnim I ce ne vipadkovo Rozglyanemo nastupnij antisimetrichnij tenzor drugogo rangu v ploskomu prostori Minkovskogo abo v nastilki malij oblasti vikrivlenogo prostoru shob krivinu mozhna bulo ne vrahovuvati 39 D M i j x i D p j x j D p i V x i T j 0 x j T i 0 d V 0 displaystyle 39 qquad Delta M ij x i Delta p j x j Delta p i int V x i T j0 x j T i0 dV 0 nbsp Prostorovi komponenti cogo tenzora ochevidno dorivnyuyut proyekciyam klasichnogo vektora momentu impulsu 40 M r p displaystyle 40 qquad mathbf M mathbf r times mathbf p nbsp Pokazhemo sho yaksho integral v pravi chastini 39 poshiriti na vsyu poverhnyu chotirivimirnogo paralelepipeda to v rezultati oderzhimo nul Dijsno poverhnevij integral peretvoryuyetsya v integral vid divergenciyi 41 P x i T j k x j T i k d V k P k x i T j k x j T i k d t displaystyle 41 qquad int partial P left x i T jk x j T ik right dV k int P nabla k left x i T jk x j T ik right d tau nbsp a divergenciya peretvoryuyetsya v nul vnaslidok 38 i simetriyi tenzora energiyi impulsu 42 k x i T j k x j T i k d i k T j k x i k T j k d j k T i k k T i k d i k T j k d j k T i k T j i T i j 0 displaystyle 42 qquad nabla k left x i T jk x j T ik right delta i k T jk x i nabla k T jk delta j k T ik nabla k T ik delta i k T jk delta j k T ik T ji T ij 0 nbsp Rivnist nulyu poverhnevogo integrala v livij chastini 41 mozhna analogichno do togo yak ce bulo z lokalnim zakonom zberezhennya energiyi impulsu traktuvati tak zmina momentu impulsu v yakijs oblasti prostoru mozhliva lishe vnaslidok protikannya momentu impulsu cherez mezhu ciyeyi oblasti Dzherela RedaguvatiLandau L D Lifshic E M 1967 Teoriya polya Teoreticheskaya fizika t 2 Moskva Gosizdat 460 s Primitki Redaguvati Formuli na cij storinci zapisani v sistemi SGS SGSG Dlya peretvorennya v Mizhnarodnu sistemu velichin ISQ divis Pravila perevodu formul iz sistemi SGS v sistemu ISQ nbsp Ce nezavershena stattya z fiziki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi Otrimano z https uk wikipedia org w index php title Tenzor energiyi impulsu amp oldid 38497753