www.wikidata.uk-ua.nina.az
Cya stattya ye sirim perekladom z anglijskoyi movi Mozhlivo vona stvorena za dopomogoyu mashinnogo perekladu abo perekladachem yakij nedostatno volodiye oboma movami Bud laska dopomozhit polipshiti pereklad kviten 2020 U matematici metod sprya zhenogo gradiyenta ye algoritmom chiselnogo rishennya okremih sistem linijnih rivnyan a same tih chiya matricya simetrichna i pozitivno viznachena Metod spryazhenogo gradiyenta chasto realizovuyetsya yak iteracijnij algoritm zastosovnij do rozridzhenih sistem yaki zanadto veliki shob obroblyati yih shlyahom pryamoyi realizaciyi abo inshih pryamih metodiv takih yak dekompoziciya Holeskogo Veliki rozridzheni sistemi chasto vinikayut pri chiselnomu virishenni chastkovih diferencialnih rivnyan abo zadachah optimizaciyi Porivnyannya zbizhnosti gradiyentnogo spusku z optimalnim rozmirom kroku zelenim ta kon yugovanim vektorom chervonim kolorom dlya minimizaciyi kvadratichnoyi funkciyi pov yazanoyi iz zadanoyu linijnoyu sistemoyu Spryazhenij gradiyent pripuskayuchi tochnu arifmetiku shoditsya ne bilshe n krokiv de n rozmir matrici sistemi tut n 2 Metod spryazhenogo gradiyenta takozh mozhe buti vikoristanij dlya virishennya neobmezhenih zadach optimizaciyi takih yak minimizaciya energiyi Jogo v osnovnomu rozrobili Magnus Gestenes ta Eduard Stifel 1 yaki zaprogramuvali jogo na Z4 Metod dvobichnogo spryazhenogo gradiyenta zabezpechuye uzagalnennya do nesimetrichnih matric Rizni metodi nelinijnogo spryazhenogo gradiyenta shukayut minimumi nelinijnih rivnyan Zmist 1 Opis zadachi kotru virishuyut spolucheni gradiyenti 2 Pryamij metod 3 Yak iterativnij metod 3 1 Otrimanij algoritm 3 1 1 Rozrahunok alfa ta beta versiyi 3 1 2 Priklad kodu v MATLAB GNU Octave 3 2 Chislovij priklad 3 2 1 Rishennya 4 Vlastivosti zbizhnosti 4 1 Teorema konvergenciyi 5 Metod poperedno obumovlenogo gradiyenta 6 Metod gnuchkih poperedno obumovlenih gradiyentiv 6 1 Priklad kodu v MATLAB GNU Octave 7 Miscevo optimalnij metod najbilsh strimkogo spusku 8 Vivedennya metodu 9 Spryazhennya gradiyenta na normalnih rivnyannyah 10 Div takozh 11 Primitki 12 Literatura 13 PosilannyaOpis zadachi kotru virishuyut spolucheni gradiyenti red Pripustimo mi hochemo rozv yazati sistemu linijnih rivnyan A x b displaystyle mathbf A mathbf x mathbf b nbsp dlya vektora x de vidoma n n matricya A simetrichna tobto A T A pozitivno viznachena tobto x T Ax gt 0 dlya vsih nenulovih vektoriv x v R n i realna i b takozh vidomo Poznachimo unikalnij rozv yazok ciyeyi sistemi cherez x displaystyle mathbf x nbsp Pryamij metod red Mi pripuskayemo sho dva nenulovi vektori u i v ye spoluchenimi shodo A yaksho u T A v 0 displaystyle mathbf u mathsf T mathbf A mathbf v 0 nbsp Oskilki A simetrichna i pozitivno viznachena liva chastina viznachaye vnutrishnij dobutok u T A v u v A A u v u A T v u A v displaystyle mathbf u mathsf T mathbf A mathbf v langle mathbf u mathbf v rangle mathbf A langle mathbf A mathbf u mathbf v rangle langle mathbf u mathbf A mathsf T mathbf v rangle langle mathbf u mathbf A mathbf v rangle nbsp Dva vektori ye spoluchenimi todi i lishe todi koli voni ortogonalni shodo cogo vnutrishnogo dobutku Buduchi spoluchenim ce simetrichne vidnoshennya yaksho u ye spryazhenim na v to v ye spryazhenim na u Pripustimo sho P p 1 p n displaystyle P mathbf p 1 dots mathbf p n nbsp yavlyaye soboyu sukupnist n vzayemno spoluchenih vektoriv shodo A Todi P stanovit osnovu dlya R n displaystyle mathbb R n nbsp i mi mozhemo visloviti rishennya x of A x b displaystyle mathbf Ax mathbf b nbsp vihodyachi z cogo x i 1 n a i p i displaystyle mathbf x sum i 1 n alpha i mathbf p i nbsp Na osnovi cogo rozshirennya mi obchislyuyemo A x i 1 n a i A p i displaystyle mathbf A mathbf x sum i 1 n alpha i mathbf A mathbf p i nbsp Livu chastinu mnozhimo na p k T displaystyle mathbf p k mathsf T nbsp p k T A x i 1 n a i p k T A p i displaystyle mathbf p k mathsf T mathbf A mathbf x sum i 1 n alpha i mathbf p k mathsf T mathbf A mathbf p i nbsp pidstavlyayuchi A x b displaystyle mathbf Ax mathbf b nbsp i u T A v u v A displaystyle mathbf u mathsf T mathbf A mathbf v langle mathbf u mathbf v rangle mathbf A nbsp p k T b i 1 n a i p k p i A displaystyle mathbf p k mathsf T mathbf b sum i 1 n alpha i left langle mathbf p k mathbf p i right rangle mathbf A nbsp potim u T v u v displaystyle mathbf u mathsf T mathbf v langle mathbf u mathbf v rangle nbsp i vikoristannya i k p k p i A 0 displaystyle forall i neq k langle mathbf p k mathbf p i rangle mathbf A 0 nbsp vrozhajnist p k b a k p k p k A displaystyle langle mathbf p k mathbf b rangle alpha k langle mathbf p k mathbf p k rangle mathbf A nbsp sho oznachaye a k p k b p k p k A displaystyle alpha k frac langle mathbf p k mathbf b rangle langle mathbf p k mathbf p k rangle mathbf A nbsp Ce daye nastupnij metod rozv yazannya rivnyannya Ax b znajti poslidovnist n spryamovanih napryamkiv a potim obchisliti koeficiyenti ak Yak iterativnij metod red Yaksho mi oberezhno oberemo spolucheni vektori p k to mozhlivo nam ne znadoblyatsya vsi shob otrimati garne nablizhennya do rishennya x Otzhe mi hochemo rozglyanuti metod spryazhenogo gradiyenta yak iteracijnij metod Ce takozh dozvolyaye priblizno virishiti sistemi de n nastilki velike sho pryamij metod zajnyav bi zanadto bagato chasu Poznachimo pochatkove pripushennya dlya x cherez x0 mozhna bez vtrati zagalnosti vvazhati sho x0 0 inakshe rozglyanemo sistemu Az b Ax 0 Pochinayuchi z x0 mi shukayemo virishennya i v kozhnij iteraciyi mi povinni mati metriku kotra zmozhyee skazati nam chi mi blizhche do virishennya x nam ce nevidomo Cya metrika viplivaye z togo sho rishennya x takozh ye unikalnim minimizatorom nastupnoyi kvadratichnoyi funkciyi f x 1 2 x T A x x T b x R n displaystyle f mathbf x tfrac 1 2 mathbf x mathsf T mathbf A mathbf x mathbf x mathsf T mathbf b qquad mathbf x in mathbf R n nbsp Isnuvannya unikalnogo minimizatora ochevidno oskilki jogo druga pohidna zadana simetrichnoyu pozitivno viznachenoyu matriceyu 2 f x A displaystyle nabla 2 f mathbf x mathbf A nbsp i sho minimalizator viokristovuye Df x 0 virishuye pochatkovu zadachu ochevidno z yiyi pershoyi pohidnoyi f x A x b displaystyle nabla f mathbf x mathbf A mathbf x mathbf b nbsp Ce govorit pro te shob pershij bazovij vektor p 0 buv vid yemnim gradiyentom f pri x x 0 Gradiyent f dorivnyuye Ax b Pochinayuchi z pochatkovoyi zdogadki x 0 ce oznachaye sho beremo p 0 b Ax 0 Inshi vektori v osnovi budut spryazheni z gradiyentom zvidsi i nazva metod spryazhenogo gradiyenta Zauvazhimo sho p 0 takozh ye zalishkovim peredbachenim cim pochatkovim krokom algoritmu Nehaj r k zalishok na k mu kroci r k b A x k displaystyle mathbf r k mathbf b mathbf Ax k nbsp Yak bulo zaznacheno vishe r k vid yemnij gradiyent f pri x x k tomu metod spusku gradiyentom potrebuye ruhu v napryamku r k Tut odnak mi napolyagayemo shob napryamki p k buli spolucheni odin z odnim Praktichnij sposib zabezpechiti ce vimagayuchi shob nastupnij napryamok poshuku buv pobudovanij z potochnogo zalishkovogo ta vsih poperednih napryamkiv poshuku 2 Ce daye takij viraz p k r k i lt k p i T A r k p i T A p i p i displaystyle mathbf p k mathbf r k sum i lt k frac mathbf p i mathsf T mathbf A mathbf r k mathbf p i mathsf T mathbf A mathbf p i mathbf p i nbsp div malyunok u verhnij chastini statti pro vpliv obmezhennya spryazhenosti na zbizhnist Sliduyuchi comu napryamku nastupne optimalne misce zadayetsya x k 1 x k a k p k displaystyle mathbf x k 1 mathbf x k alpha k mathbf p k nbsp z a k p k T b A x k p k T A p k p k T r k p k T A p k displaystyle alpha k frac mathbf p k mathsf T mathbf b mathbf Ax k mathbf p k mathsf T mathbf A mathbf p k frac mathbf p k mathsf T mathbf r k mathbf p k mathsf T mathbf A mathbf p k nbsp de ostannya rivnist viplivaye z viznachennya r k Viraz dlya a k displaystyle alpha k nbsp mozhe buti otrimano yaksho pidminyati viraz x k 1 na f i minimizuvati jogo wrt a k displaystyle alpha k nbsp f x k 1 f x k a k p k g a k g a k 0 a k p k T b A x k p k T A p k displaystyle begin aligned f mathbf x k 1 amp f mathbf x k alpha k mathbf p k g alpha k g alpha k amp overset 0 quad Rightarrow quad alpha k frac mathbf p k mathsf T mathbf b mathbf Ax k mathbf p k mathsf T mathbf A mathbf p k end aligned nbsp Otrimanij algoritm red Navedenij vishe algoritm daye najbilsh proste poyasnennya metodu spryazhenogo gradiyenta Zdayetsya algoritm yak zayavleno vimagaye zberigannya vsih poperednih napryamkiv poshuku ta vektoriv zalishkiv a takozh bagatoh matrichnih vektornih mnozhen i takim chinom mozhe buti obchislyuvalno dorogim Odnak bilsh detalnij analiz algoritmu pokazuye sho r i ye ortogonalnim do r j tobto r i T r j 0 displaystyle mathbf r i mathsf T mathbf r j 0 nbsp dlya i j I p i A ortogonalna do p j tobto p i T A p j 0 displaystyle mathbf p i mathsf T A mathbf p j 0 nbsp dlya i j Ce mozhna vvazhati sho v miru prosuvannya algoritmu p i i r i ohoplyuyut toj samij pidprostir Krilova Yaksho r ya utvoryuye ortogonalnu osnovu vidnosno standartnogo vnutrishnogo dobutku a p i utvoryuye ortogonalnu osnovu vidnosno vnutrishnogo dobutku indukovanogo A Tomu x k mozhna rozglyadati yak proyekciyu x na pidprostir Krilova Algoritm detalno opisanij nizhche dlya rozv yazannya Ax b de A realna simetrichna pozitivno viznachena matricya Vhidnij vektor x 0 mozhe buti pribliznim pochatkovim rishennyam abo 0 Ce insha receptura tochnoyi proceduri opisanoyi vishe r 0 b A x 0 if r 0 is sufficiently small then return x 0 as the result p 0 r 0 k 0 repeat a k r k T r k p k T A p k x k 1 x k a k p k r k 1 r k a k A p k if r k 1 is sufficiently small then exit loop b k r k 1 T r k 1 r k T r k p k 1 r k 1 b k p k k k 1 end repeat return x k 1 as the result displaystyle begin aligned amp mathbf r 0 mathbf b mathbf Ax 0 amp hbox if mathbf r 0 text is sufficiently small then return mathbf x 0 text as the result amp mathbf p 0 mathbf r 0 amp k 0 amp text repeat amp qquad alpha k frac mathbf r k mathsf T mathbf r k mathbf p k mathsf T mathbf Ap k amp qquad mathbf x k 1 mathbf x k alpha k mathbf p k amp qquad mathbf r k 1 mathbf r k alpha k mathbf Ap k amp qquad hbox if mathbf r k 1 text is sufficiently small then exit loop amp qquad beta k frac mathbf r k 1 mathsf T mathbf r k 1 mathbf r k mathsf T mathbf r k amp qquad mathbf p k 1 mathbf r k 1 beta k mathbf p k amp qquad k k 1 amp text end repeat amp text return mathbf x k 1 text as the result end aligned nbsp Ce najbilsh chasto vikoristovuvanij algoritm Taka zh formula dlya bk takozh vikoristovuyetsya v nelinijnomu metodi gradiyenta Fletchera Rivza Rozrahunok alfa ta beta versiyi red V algoritmi ak vibirayetsya takim sho r k 1 displaystyle mathbf r k 1 nbsp ye ortogonalnim do r k Znamennik sprosheno vid a k r k T r k r k T A p k r k T r k p k T A p k displaystyle alpha k frac mathbf r k mathsf T mathbf r k mathbf r k mathsf T mathbf A mathbf p k frac mathbf r k mathsf T mathbf r k mathbf p k mathsf T mathbf Ap k nbsp z tih pir r k 1 p k 1 b k p k displaystyle mathbf r k 1 mathbf p k 1 mathbf beta k mathbf p k nbsp bk vibirayetsya takim sho p k 1 displaystyle mathbf p k 1 nbsp spoluchayetsya z p k Spochatku bk ye b k r k 1 T A p k p k T A p k displaystyle beta k frac mathbf r k 1 mathsf T mathbf A mathbf p k mathbf p k mathsf T mathbf A mathbf p k nbsp vikoristovuyuchi r k 1 r k a k A p k displaystyle mathbf r k 1 mathbf r k alpha k mathbf A mathbf p k nbsp i rivnoznachnoA p k 1 a k r k r k 1 displaystyle mathbf A mathbf p k frac 1 alpha k mathbf r k mathbf r k 1 nbsp chiselnik bk perepisuyetsya yak r k 1 T A p k 1 a k r k 1 T r k r k 1 1 a k r k 1 T r k 1 displaystyle mathbf r k 1 mathsf T mathbf A mathbf p k frac 1 alpha k mathbf r k 1 mathsf T mathbf r k mathbf r k 1 frac 1 alpha k mathbf r k 1 mathsf T mathbf r k 1 nbsp oskilki r k 1 displaystyle mathbf r k 1 nbsp i r k ye ortogonalnimi za konstrukciyeyu Znamennik perepisuyetsya yak p k T A p k r k b k 1 p k 1 T A p k 1 a k r k T r k r k 1 1 a k r k T r k displaystyle mathbf p k mathsf T mathbf A mathbf p k mathbf r k beta k 1 mathbf p k 1 mathsf T mathbf A mathbf p k frac 1 alpha k mathbf r k mathsf T mathbf r k mathbf r k 1 frac 1 alpha k mathbf r k mathsf T mathbf r k nbsp vikoristovuyuchi sho napryamki poshuku p k kon yuguyutsya i znovu sho zalishki ye ortogonalnimi Ce daye b v algoritmi pislya skasuvannya ak Priklad kodu v MATLAB GNU Octave red function x conjgrad A b x r b A x p r rsold r r for i 1 length b Ap A p alpha rsold p Ap x x alpha p r r alpha Ap rsnew r r if sqrt rsnew lt 1e 10 break end p r rsnew rsold p rsold rsnew end end Chislovij priklad red Rozglyanemo linijnu sistemu Ax b zadanu cherez A x 4 1 1 3 x 1 x 2 1 2 displaystyle mathbf A mathbf x begin bmatrix 4 amp 1 1 amp 3 end bmatrix begin bmatrix x 1 x 2 end bmatrix begin bmatrix 1 2 end bmatrix nbsp mi vikonayemo dva etapi metodu spryazhenogo gradiyenta pochinayuchi z pochatkovoyi zdogadki x 0 2 1 displaystyle mathbf x 0 begin bmatrix 2 1 end bmatrix nbsp shob znajti priblizne rishennya dlya sistemi Rishennya red Dlya dovidki pravilne rishennya x 1 11 7 11 0 0909 0 6364 displaystyle mathbf x begin bmatrix frac 1 11 frac 7 11 end bmatrix approx begin bmatrix 0 0909 0 6364 end bmatrix nbsp Nash pershij krok obchisliti zalishkovij vektor r 0 pov yazanij z x 0 Cej zalishok obchislyuyetsya za formuloyu r 0 b Ax 0 a v nashomu vipadku dorivnyuye r 0 1 2 4 1 1 3 2 1 8 3 displaystyle mathbf r 0 begin bmatrix 1 2 end bmatrix begin bmatrix 4 amp 1 1 amp 3 end bmatrix begin bmatrix 2 1 end bmatrix begin bmatrix 8 3 end bmatrix nbsp Oskilki ce persha iteraciya mi budemo vikoristovuvati zalishkovij vektor r 0 yak nash pochatkovij napryamok poshuku p 0 metod viboru p k zminitsya v podalshih iteraciyah Teper obchislimo skalyarnij a0 vikoristovuyuchi vidnoshennya a 0 r 0 T r 0 p 0 T A p 0 8 3 8 3 8 3 4 1 1 3 8 3 73 331 displaystyle alpha 0 frac mathbf r 0 mathsf T mathbf r 0 mathbf p 0 mathsf T mathbf Ap 0 frac begin bmatrix 8 amp 3 end bmatrix begin bmatrix 8 3 end bmatrix begin bmatrix 8 amp 3 end bmatrix begin bmatrix 4 amp 1 1 amp 3 end bmatrix begin bmatrix 8 3 end bmatrix frac 73 331 nbsp Teper mi mozhemo obchisliti h 1 vikoristovuyuchi formulu x 1 x 0 a 0 p 0 2 1 73 331 8 3 0 2356 0 3384 displaystyle mathbf x 1 mathbf x 0 alpha 0 mathbf p 0 begin bmatrix 2 1 end bmatrix frac 73 331 begin bmatrix 8 3 end bmatrix begin bmatrix 0 2356 0 3384 end bmatrix nbsp Cej rezultat zavershuye pershu iteraciyu rezultatom yakoyi ye pokrashene priblizne rishennya dlya sistemi x 1 Teper mi mozhemo perejti i obchisliti nastupnij zalishkovij vektor r 1 za formuloyu r 1 r 0 a 0 A p 0 8 3 73 331 4 1 1 3 8 3 0 2810 0 7492 displaystyle mathbf r 1 mathbf r 0 alpha 0 mathbf A mathbf p 0 begin bmatrix 8 3 end bmatrix frac 73 331 begin bmatrix 4 amp 1 1 amp 3 end bmatrix begin bmatrix 8 3 end bmatrix begin bmatrix 0 2810 0 7492 end bmatrix nbsp Nastupnim nashim krokom u procesi ye obchislennya skalyarnogo b0 yake zgodom bude vikoristano dlya viznachennya nastupnogo napryamku poshuku p 1 b 0 r 1 T r 1 r 0 T r 0 0 2810 0 7492 0 2810 0 7492 8 3 8 3 0 0088 displaystyle beta 0 frac mathbf r 1 mathsf T mathbf r 1 mathbf r 0 mathsf T mathbf r 0 frac begin bmatrix 0 2810 amp 0 7492 end bmatrix begin bmatrix 0 2810 0 7492 end bmatrix begin bmatrix 8 amp 3 end bmatrix begin bmatrix 8 3 end bmatrix 0 0088 nbsp Teper vikoristovuyuchi cej skalyar b0 mi mozhemo obchisliti nastupnij napryamok poshuku p 1 vikoristovuyuchi vidnoshennya p 1 r 1 b 0 p 0 0 2810 0 7492 0 0088 8 3 0 3511 0 7229 displaystyle mathbf p 1 mathbf r 1 beta 0 mathbf p 0 begin bmatrix 0 2810 0 7492 end bmatrix 0 0088 begin bmatrix 8 3 end bmatrix begin bmatrix 0 3511 0 7229 end bmatrix nbsp Teper mi obchislyuyemo skalyarnij a1 vikoristovuyuchi neshodavno pridbanij p 1 vikoristovuyuchi toj samij metod sho i dlya a0 a 1 r 1 T r 1 p 1 T A p 1 0 2810 0 7492 0 2810 0 7492 0 3511 0 7229 4 1 1 3 0 3511 0 7229 0 4122 displaystyle alpha 1 frac mathbf r 1 mathsf T mathbf r 1 mathbf p 1 mathsf T mathbf Ap 1 frac begin bmatrix 0 2810 amp 0 7492 end bmatrix begin bmatrix 0 2810 0 7492 end bmatrix begin bmatrix 0 3511 amp 0 7229 end bmatrix begin bmatrix 4 amp 1 1 amp 3 end bmatrix begin bmatrix 0 3511 0 7229 end bmatrix 0 4122 nbsp Nareshti mi znahodimo h 2 vikoristovuyuchi toj samij metod sho i dlya znahodzhennya h 1 x 2 x 1 a 1 p 1 0 2356 0 3384 0 4122 0 3511 0 7229 0 0909 0 6364 displaystyle mathbf x 2 mathbf x 1 alpha 1 mathbf p 1 begin bmatrix 0 2356 0 3384 end bmatrix 0 4122 begin bmatrix 0 3511 0 7229 end bmatrix begin bmatrix 0 0909 0 6364 end bmatrix nbsp Rezultat x 2 ye krashim nablizhennyam do rishennya sistemi nizh x 1 i x 0 Yakbi tochna arifmetika povinna vikoristovuvatisya v comu prikladi zamist obmezhenoyi tochnosti to tochne rishennya teoretichno bulo b dosyagnute pislya n 2 iteracij n ce poryadok sistemi Vlastivosti zbizhnosti red Metod spryazhenogo gradiyenta teoretichno mozhna rozglyadati yak pryamij metod oskilki vin daye tochne rishennya pislya kincevogo chisla iteracij sho ne perevishuye rozmir matrici za vidsutnosti pomilki okruglennya Odnak metod gradiyenta spryazhenih nestabilnij shodo navit nevelikih zburen napriklad bilshist napryamkiv na praktici ne ye spoluchenimi i tochnogo rishennya tak i ne otrimati Na shastya metod spryazhenogo gradiyenta mozhe buti vikoristanij yak iteracijnij metod oskilki vin zabezpechuye monotonno polipshennya nablizhen x k displaystyle mathbf x k nbsp do tochnogo rishennya yake mozhe dosyagti neobhidnogo dopusku pislya vidnosno nevelikoyi porivnyano z rozmirom problemi kilkosti iteracij Polipshennya yak pravilo linijne i jogo shvidkist viznachayetsya chislom umovi k A displaystyle kappa A nbsp sistemnoyi matrici A displaystyle A nbsp tim bilshe k A displaystyle kappa A nbsp ye chim povilnishe polipshennya 3 Yaksho k A displaystyle kappa A nbsp velika poperednya umova vikoristovuyetsya dlya zamini vihidnoyi sistemi A x b 0 displaystyle mathbf Ax mathbf b 0 nbsp z M 1 A x b 0 displaystyle mathbf M 1 mathbf Ax mathbf b 0 nbsp takij yak k M 1 A displaystyle kappa mathbf M 1 mathbf A nbsp menshe nizh k A displaystyle kappa mathbf A nbsp Divitsya nizhche Teorema konvergenciyi red Viznachte pidmnozhinu mnogochleniv yak P k p P k p 0 1 displaystyle Pi k left lbrace p in Pi k p 0 1 right rbrace nbsp de P k displaystyle Pi k nbsp ce mnozhina mnogochleniv maksimalnogo stupenya k displaystyle k nbsp Dozvolyati x k k displaystyle left mathbf x k right k nbsp buti iteracijnim nablizhennyam tochnogo rishennya x displaystyle mathbf x nbsp i viznachiti pomilki yak e k x k x displaystyle mathbf e k mathbf x k mathbf x nbsp Teper shvidkist konvergenciyi mozhna priblizno ociniti yak 4 e k A min p P k p A e 0 A min p P k max l s A p l e 0 A 2 k A 1 k A 1 k e 0 A displaystyle begin aligned left mathbf e k right mathbf A amp min p in Pi k left p mathbf A mathbf e 0 right mathbf A amp leq min p in Pi k max lambda in sigma mathbf A p lambda left mathbf e 0 right mathbf A amp leq 2 left frac sqrt kappa mathbf A 1 sqrt kappa mathbf A 1 right k left mathbf e 0 right mathbf A end aligned nbsp de s A displaystyle sigma mathbf A nbsp poznachaye spektr i k A displaystyle kappa mathbf A nbsp poznachaye nomer umovi Zauvazhte vazhliva mezha koli k A displaystyle kappa mathbf A nbsp shilyayetsya do displaystyle infty nbsp k A 1 k A 1 1 2 k A for k A 1 displaystyle frac sqrt kappa mathbf A 1 sqrt kappa mathbf A 1 approx 1 frac 2 sqrt kappa mathbf A quad text for quad kappa mathbf A gg 1 nbsp Cya mezha pokazuye bilsh shvidkij koeficiyent konvergenciyi porivnyano z iteracijnimi metodami Yakobi abo Gaussa Sejdelya yaki masshtabuyutsya yak 1 2 k A displaystyle approx 1 frac 2 kappa mathbf A nbsp Metod poperedno obumovlenogo gradiyenta red U bilshosti vipadkiv poperednya pidgotovka neobhidna dlya zabezpechennya shvidkoyi konvergenciyi metodu gradiyenta spryazhenih Metod poperedno obumovlenogo gradiyenta maye takij viglyad r 0 b A x 0 displaystyle mathbf r 0 mathbf b mathbf Ax 0 nbsp z 0 M 1 r 0 displaystyle mathbf z 0 mathbf M 1 mathbf r 0 nbsp p 0 z 0 displaystyle mathbf p 0 mathbf z 0 nbsp k 0 displaystyle k 0 nbsp repeata k r k T z k p k T A p k displaystyle alpha k frac mathbf r k mathsf T mathbf z k mathbf p k mathsf T mathbf Ap k nbsp x k 1 x k a k p k displaystyle mathbf x k 1 mathbf x k alpha k mathbf p k nbsp r k 1 r k a k A p k displaystyle mathbf r k 1 mathbf r k alpha k mathbf Ap k nbsp if rk 1 is sufficiently small then exit loop end if z k 1 M 1 r k 1 displaystyle mathbf z k 1 mathbf M 1 mathbf r k 1 nbsp b k z k 1 T r k 1 z k T r k displaystyle beta k frac mathbf z k 1 mathsf T mathbf r k 1 mathbf z k mathsf T mathbf r k nbsp p k 1 z k 1 b k p k displaystyle mathbf p k 1 mathbf z k 1 beta k mathbf p k nbsp k k 1 displaystyle k k 1 nbsp dd end repeat The result is xk 1 dd Vishevkazanij sklad ekvivalentnij zastosuvannyu metodu gradiyenta spryazhenogo bez poperednogo obumovlennya sistemi 1 E 1 A E 1 T x E 1 b displaystyle mathbf E 1 mathbf A mathbf E 1 mathsf T mathbf hat x mathbf E 1 mathbf b nbsp de E E T M x E T x displaystyle mathbf EE mathsf T mathbf M qquad mathbf hat x mathbf E mathsf T mathbf x nbsp Matricya poperednogo kondicionera M povinna buti simetrichnoyu pozitivno viznachenoyu i fiksovanoyu tobto ne mozhe zminyuvatisya vid iteraciyi do iteraciyi Yaksho bud yake z cih pripushen shodo poperednogo kondicionera porusheno povedinka metodu poperedno obumovlenogo gradiyenta mozhe stati neperedbachuvanim Prikladom chasto vikoristovuvanogo poperednogo kondicionera ye nepovna faktorizaciya Holeskogo Metod gnuchkih poperedno obumovlenih gradiyentiv red U vazhkozahisnih programah zastosovuyutsya skladni poperedni kondicioneri sho mozhe prizvesti do zminnoyi poperednoyi kondicionuvannya sho zminyuyetsya mizh iteraciyami Navit yaksho poperednij kondicioner ye simetrichnim pozitivno viznachenim na kozhnij iteraciyi toj fakt sho vin mozhe zminitisya robit argumenti vishe nedijsnimi a na praktichnih testah prizvodit do znachnogo upovilnennya konvergenciyi algoritmu predstavlenogo vishe Vikoristovuyuchi formulu Polyaka Rib yera b k z k 1 T r k 1 r k z k T r k displaystyle beta k frac mathbf z k 1 mathsf T left mathbf r k 1 mathbf r k right mathbf z k mathsf T mathbf r k nbsp zamist formuli Fletcher Rivz b k z k 1 T r k 1 z k T r k displaystyle beta k frac mathbf z k 1 mathsf T mathbf r k 1 mathbf z k mathsf T mathbf r k nbsp mozhe rizko pokrashiti konvergenciyu v comu vipadku 5 Cej variant poperedno obumovlenogo metodu gradiyenta kon yugatu mozhna nazvati 6 gnuchkim oskilki vin dozvolyaye zminyuvati poperednyu umovu Takozh pokazano sho gnuchka versiya 7 ye nadijnoyu navit yaksho poperednij kondicioner ne ye simetrichnim pozitivnim znachennyam SPD Realizaciya gnuchkoyi versiyi vimagaye zberigannya dodatkovogo vektora Dlya fiksovanogo poperednogo kondicionera SPD z k 1 T r k 0 displaystyle mathbf z k 1 mathsf T mathbf r k 0 nbsp tomu obidvi formuli dlya bk ekvivalentni v tochnij arifmetici tobto bez pohibki okruglennya Matematichne poyasnennya krashoyi povedinki konvergenciyi metodu za formuloyu Polyaka Rib yera polyagaye v tomu sho metod v comu vipadku ye lokalno optimalnim zokrema vin ne zblizhuyetsya povilnishe nizh lokalno optimalnij metod najbilsh krutogo spusku 8 Priklad kodu v MATLAB GNU Octave red function x k cgp x0 A C b mit stol bbA bbC Synopsis x0 initial point A Matrix A of the system Ax b C Preconditioning Matrix can be left or right mit Maximum number of iterations stol residue norm tolerance bbA Black Box that computes the matrix vector product for A u bbC Black Box that computes for left side preconditioner ha C ra for right side preconditioner ha C ra x Estimated solution point k Number of iterations done Example tic x t cgp x0 S speye 1 b 3000 10 8 Z o Z o Z o o toc Elapsed time is 0 550190 seconds Reference Metodos iterativos tipo Krylov para sistema lineales B Molina y M Raydan ISBN 908 261 078 X if nargin lt 8 error Not enough input arguments Try help end if isempty A error Input matrix A must not be empty end if isempty C error Input preconditioner matrix C must not be empty end x x0 ha 0 hp 0 hpp 0 ra 0 rp 0 rpp 0 u 0 k 0 ra b bbA A x0 lt ra b A x0 while norm ra inf gt stol ha bbC C ra lt ha C ra k k 1 if k mit warning GCP MAXIT mit reached no conversion return end hpp hp rpp rp hp ha rp ra t rp hp if k 1 u hp else u hp t rpp hpp u end Au bbA A u lt Au A u a t u Au x x a u ra rp a Au end Miscevo optimalnij metod najbilsh strimkogo spusku red I v originalnomu i v poperedno obumovlenomu metodah gradiyenta kon yugatu potribno lishe vstanoviti b k 0 displaystyle beta k 0 nbsp shob zrobiti yih lokalno optimalnimi vikoristovuyuchi poshuk liniyi najkrutishi metodi spusku Pri cij pidstanovci vektori p zavzhdi taki zh yak vektori z tomu nemaye neobhidnosti zberigati vektori p Takim chinom kozhna iteraciya cih najbilsh strimkih metodiv spusku ye desho deshevshoyu porivnyano z metodom spryazhenogo gradiyenta Odnak ostanni shodyatsya shvidshe yaksho ne zastosovuyetsya visoko zminna ta abo poperednij kondicioner yakij ne ye SPD div Vishe Vivedennya metodu red Metod spryazhenogo gradiyenta mozhe buti otrimanij z kilkoh riznih tochok zoru vklyuchayuchi specializaciyu metodu spryazhenogo spryamuvannya dlya optimizaciyi ta variaciyu iteraciyi Arnoldi Lancosa dlya problem vlasnogo znachennya Nezvazhayuchi na rozbizhnist u pidhodah ci vivodi podilyayut zagalnu temu dokazuyuchi ortogonalnist zalishkiv ta sukupnist napryamkiv poshuku Ci dvi vlastivosti mayut virishalne znachennya dlya rozrobki dobre vidomogo stislogo sposobu Spryazhennya gradiyenta na normalnih rivnyannyah red Kon yugat gradientnogo metod mozhe buti zastosovanij do dovilnogo p matricya z rozmirnistyu m matrici zastosovuyuchi jogo do normalnim rivnyannyam T A i prava chastina vektora A T tak yak T A ye simetrichnoyu pozitivno poluopredelena matriceyu dlya bud yakogo A Rezultat ce spryazhenij gradiyent u zvichajnih rivnyannyah CGNR A T Ax A T bYak iteracijnij metod ne potribno yavno formuvati A T A v pam yati a lishe vikonuvati matrichnij vektor i transponuvati mnozhennya matrichnogo vektora Otzhe CGNR osoblivo korisnij koli A ye rozridzhenoyu matriceyu oskilki ci operaciyi zazvichaj ye nadzvichajno efektivnimi Odnak nedolikom formuvannya normalnih rivnyan ye te sho chislo umovi k A T A dorivnyuye k 2 A tomu shvidkist konvergenciyi CGNR mozhe buti povilnoyu i yakist pribliznogo rishennya mozhe buti chutlivoyu do okruglennya pomilki Poshuk horoshogo poperednogo kondicionera chasto ye vazhlivoyu chastinoyu vikoristannya metodu CGNR Zaproponovano kilka algoritmiv napriklad CGLS LSQR Nibito algoritm LSQR maye najkrashu chislovu stijkist koli A pogano obumovlenij tobto A maye velike chislo umov Div takozh red Metod proksimalnogo gradiyenta Metod dvobichnogo gradiyenta BiCG Sposib kon yugaciyi zalishkiv Propaganda viruvan Gaussa Iterativnij metod Linijni sistemi Krilova pidprostir Metod nelinijnogo spryazhenogo gradiyenta Pidgotovka Ridke mnozhennya matrichnogo vektoraPrimitki red Straeter T A On the Extension of the Davidon Broyden Class of Rank One Quasi Newton Minimization Methods to an Infinite Dimensional Hilbert Space with Applications to Optimal Control Problems NASA The conjugation constraint is an orthonormal type constraint and hence the algorithm bears resemblance to Gram Schmidt orthonormalization Saad Yousef 2003 Iterative methods for sparse linear systems vid 2nd Philadelphia Pa Society for Industrial and Applied Mathematics s 195 ISBN 978 0 89871 534 7 Hackbusch W 21 chervnya 2016 Iterative solution of large sparse systems of equations vid 2nd Switzerland Springer ISBN 9783319284835 OCLC 952572240 Golub Gene H Ye Qiang 1999 Inexact Preconditioned Conjugate Gradient Method with Inner Outer Iteration SIAM Journal on Scientific Computing 21 4 1305 doi 10 1137 S1064827597323415 Proignorovano nevidomij parametr citeseerx dovidka Notay Yvan 2000 Flexible Conjugate Gradients SIAM Journal on Scientific Computing 22 4 1444 1460 doi 10 1137 S1064827599362314 Proignorovano nevidomij parametr citeseerx dovidka Henricus Bouwmeester Andrew Dougherty Andrew V Knyazev Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods Procedia Computer Science Volume 51 Pages 276 285 Elsevier 2015 https doi org 10 1016 j procs 2015 05 241 Knyazev Andrew V Lashuk Ilya 2008 Steepest Descent and Conjugate Gradient Methods with Variable Preconditioning SIAM Journal on Matrix Analysis and Applications 29 4 1267 arXiv math 0605767 doi 10 1137 060675290 Literatura red Sposib spryazhenogo gradiyenta spochatku buv zaproponovanij v Hestenes Magnus R Stiefel Eduard December 1952 Methods of Conjugate Gradients for Solving Linear Systems Journal of Research of the National Bureau of Standards 49 6 409 doi 10 6028 jres 049 044 Opisi metodu mozhna znajti v nastupnih pidruchnikah Atkinson Kendell A 1988 Section 8 9 An introduction to numerical analysis vid 2nd John Wiley and Sons ISBN 978 0 471 50023 0 Avriel Mordecai 2003 Nonlinear Programming Analysis and Methods Dover Publishing ISBN 978 0 486 43227 4 Golub Gene H Van Loan Charles F 15 zhovtnya 1996 Chapter 10 Matrix computations vid 3rd Johns Hopkins University Press ISBN 978 0 8018 5414 9 Saad Yousef 1 kvitnya 2003 Chapter 6 Iterative methods for sparse linear systems vid 2nd SIAM ISBN 978 0 89871 534 7 Posilannya red Hazewinkel Michiel ed 2001 1994 Conjugate gradients method of Encyclopedia of Mathematics Springer Science Business Media B V Kluwer Academic Publishers ISBN 978 1 55608 010 4 Otrimano z https uk wikipedia org w index php title Metod spryazhenogo gradiyenta amp oldid 40668615