www.wikidata.uk-ua.nina.az
Zakon Ampera zakon vzayemodiyi postijnih strumiv kotrij ustanoviv Andre Mari Amper 1820 roku Iz zakonu Ampera vihodit sho paralelni providniki z postijnimi strumami yaki techut v odnomu napryami prityaguyutsya a v protilezhnomu vidshtovhuyutsya Zakonom Ampera nazivayut takozh zakon sho viznachaye silu z yakoyu magnitne pole diye na nevelikij vidrizok providnika zi strumom source source source source source source source source source source source source source source Vzayemodiya dvoh elementarnih strumiv a paralelnih b antiparalelnih vsi vidrizki vektori lezhat v odnij ploshini Sila Ampera ce sila z yakoyu magnitne pole diye na providnik zi strumom F B I L sin a displaystyle F BIL sin alpha Sila Ampera zalezhit vid sili strumu I displaystyle I elementa chastini dovzhini providnika d l displaystyle dl kuta mizh napryamom strumu i napryamkom linij magnitnogo polya a displaystyle alpha ta magnitnoyi indukciyi B displaystyle B i zadayetsya formuloyu d F B I d l sin a displaystyle dF BIdl sin alpha U vektornij formi silu Ampera zapisuyut tak d F I d l B displaystyle d mathbf F I mathbf dl mathbf B Zmist 1 Fizichnij zmist zakonu Ampera 2 Vipadok dvoh paralelnih providnikiv 3 Proyavi zakonu Ampera 4 Zastosuvannya 5 Sila Ampera i tretij zakon Nyutona 6 Deyaki istorichni aspekti 6 1 Viyavlennya efektu 6 2 Pidbir formuli dlya sili 7 Zakon Ampera yak relyativistskij efekt 8 Div takozh 9 Literatura 10 DzherelaFizichnij zmist zakonu Ampera RedaguvatiPid zakonom Ampera mayut na uvazi sukupnist tverdzhen i formul sho rozkrivayut silovij vpliv na providnik zi strumom z boku magnitnogo polya mozhlivo stvorenogo inshim providnikom zi strumom Zakon viznachaye silu diyi malogo vidrizka providnika d l 1 displaystyle dl 1 nbsp zi strumom I 1 displaystyle I 1 nbsp na inshij malij vidrizok d l 2 displaystyle dl 2 nbsp zi strumom I 2 displaystyle I 2 nbsp d 2 F 12 m 0 I 1 I 2 4 p d l 2 d l 1 r 2 r 1 r 1 r 2 3 I 2 d l 2 d B 1 r 2 displaystyle d 2 vec F 12 frac mu 0 I 1 I 2 4 pi cdot frac d vec l 2 times d vec l 1 times vec r 2 vec r 1 vec r 1 vec r 2 3 I 2 d vec l 2 times d vec B 1 vec r 2 nbsp dd de r 1 displaystyle vec r 1 nbsp i r 2 displaystyle vec r 2 nbsp radius vektori elementiv dovzhini providnikiv d l 1 displaystyle d vec l 1 nbsp i d l 2 displaystyle d vec l 2 nbsp a d 2 F 12 displaystyle d 2 vec F 12 nbsp sila diyi elementa d l 1 displaystyle d vec l 1 nbsp yakij stvoryuye pole d B 1 r 2 displaystyle d vec B 1 vec r 2 nbsp v tochci r 2 displaystyle vec r 2 nbsp na element d l 2 displaystyle d vec l 2 nbsp m 0 displaystyle mu 0 nbsp magnitna stala silu vzayemodiyi dvoh providnih zamknutih konturiv formi C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp zi strumami I 1 displaystyle I 1 nbsp i I 2 displaystyle I 2 nbsp F 12 m 0 I 1 I 2 4 p C 2 C 1 d r 2 d r 1 r 2 r 1 r 1 r 2 3 displaystyle mathbf F 12 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 2 oint limits mathbb C 1 frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 1 mathbf r 2 3 nbsp dd de r 1 displaystyle mathbf r 1 nbsp i r 2 displaystyle mathbf r 2 nbsp radius vektori yaki probigayut usi tochki konturiv C 1 displaystyle C 1 nbsp C 2 displaystyle C 2 nbsp a F 12 displaystyle mathbf F 12 nbsp sila z yakoyu kontur C 1 displaystyle C 1 nbsp diye na kontur C 2 displaystyle C 2 nbsp Po suti ce integruvannya virazu z poperednogo punktu silu z yakoyu magnitne pole diye na vidrizok providnika d l displaystyle dl nbsp zi strumom I displaystyle I nbsp A plosku dilyanku d S displaystyle dS nbsp zi strumom i displaystyle vec i nbsp A m abo malij ob yem d V displaystyle dV nbsp zi strumom j displaystyle vec j nbsp A m2 d F I d l B d F i d S B d F j d V B displaystyle d vec F Id vec l times vec B qquad d vec F vec i dS times vec B qquad d vec F vec j dV times vec B nbsp dd Napryamok sili d F displaystyle d vec F nbsp viznachayut za pravilom obchislennya vektornogo dobutku Yiyi modul u razi provodu znahodyat yak d F I B d l sin a displaystyle dF IBdl sin alpha nbsp de a displaystyle alpha nbsp kut mizh B displaystyle vec B nbsp i napryamkom strumu Sila najbilsha koli providnik perpendikulyarnij do linij magnitnoyi indukciyi a 90 displaystyle alpha 90 circ nbsp Integruvannya dozvolyaye otrimati silu diyi polya na ob yekt u cilomu Vipadok dvoh paralelnih providnikiv Redaguvati nbsp Dva neskinchennih rivnobizhnih providniki zi strumami u vakuumiNajvidomishim prikladom sho pokazuye silu Ampera ye taka zadacha U vakuumi na vidstani r displaystyle r nbsp odin vid odnogo roztashovani dva neskinchennih paralelnih providnika v yakih v odnomu napryamku techut strumi I 1 displaystyle I 1 nbsp i I 2 displaystyle I 2 nbsp Potribno znajti silu yaka diye na odinicyu dovzhini providnika Za zakonom Bio Savara Laplasa neskinchennij providnik zi strumom I 1 displaystyle I 1 nbsp u tochci na vidstani r displaystyle r nbsp stvoryuye magnitne pole z indukciyeyu B 1 r m 0 4 p 2 I 1 r e f displaystyle vec B 1 r frac mu 0 4 pi frac 2I 1 r vec e varphi nbsp de m 0 displaystyle mu 0 nbsp magnitna stala e f displaystyle vec e varphi nbsp odinichnij vektor uzdovzh kola vissyu simetriyi yakogo ye provid zi strumom I 1 displaystyle I 1 nbsp Za zakonom Ampera znajdemo silu z yakoyu pershij providnik diye na malu dilyanku d l displaystyle d vec l nbsp drugogo d F 12 I 2 d l B 1 r displaystyle d vec F 12 I 2 d vec l times vec B 1 r nbsp Za pravilom livoyi ruki d F 12 displaystyle d vec F 12 nbsp spryamovana v bik pershogo providnika tak samo sila d F 21 displaystyle d vec F 21 nbsp yaka diye na pershij providnik spryamovana v bik drugogo providnika Otzhe providniki prityaguyutsya Modul ciyeyi sili r displaystyle r nbsp vidstan mizh providnikami d F 12 m 0 4 p 2 I 1 I 2 r d l displaystyle dF 12 frac mu 0 4 pi frac 2I 1 I 2 r dl nbsp Integruyemo za dilyankoyu providnika dovzhini L displaystyle L nbsp mezhi integruvannya za l displaystyle l nbsp vid 0 do L displaystyle L nbsp F 12 m 0 4 p 2 I 1 I 2 r L displaystyle F 12 frac mu 0 4 pi frac 2I 1 I 2 r cdot L nbsp Yaksho L displaystyle L nbsp odinichna dovzhina to cej viraz zadaye shukanu silu vzayemodiyi Proyavi zakonu Ampera RedaguvatiElektrodinamichne zrushennya shin strumoprovodiv trifaznogo zminnogo strumu na pidstanciyah pid diyeyu strumiv korotkogo zamikannya Rozsuvannya strumoprovodiv rejkotrona pid chas postrilu Zastosuvannya RedaguvatiBud yaki vuzli v elektrotehnici de pid diyeyu elektromagnitnogo polya vidbuvayetsya ruh bud yakih elementiv vikoristovuyut zakon Ampera Princip roboti elektromehanichnih mashin ruh chastini obmotki rotora vidnosno chastini obmotki statora gruntuyetsya na vikoristanni zakonu Ampera i najbilsh poshirenij pristrij ce elektrodvigun abo sho konstruktivno majzhe te same generator Same pid diyeyu sili Ampera vidbuvayetsya obertannya rotora oskilki na jogo obmotku diye magnitne pole statora privodyachi v ruh Bud yaki transportni zasobi na elektrotyazi dlya obertannya valiv na yakih rozmisheno kolesa vikoristovuyut silu Ampera tramvayi elektrokari elektropoyizdi tosho Takozh magnitne pole ruhaye mehanizmi elektroprivodiv elektro dveri rozsuvni vorota dveri lifta Inshimi slovami bud yaki pristroyi yaki pracyuyut na elektrici i mayut ruhomi vuzli zasnovani na vikoristanni zakonu Ampera Takozh vin zastosovuyetsya v bagatoh inshih vidah elektrotehniki navushnikah chi napriklad u dinamichnomu guchnomovci dinamiku v nomu dlya zbudzhennya membrani yaka viroblyaye zvukovi kolivannya vikoristovuyut postijnij magnit na nogo pid diyeyu elektromagnitnogo polya stvoryuvanogo roztashovanim poruch providnikom zi strumom diye sila Ampera yaka zminyuyetsya vidpovidno do potribnoyi zvukovoyi chastoti Takozh Elektrodinamichne stisnennya plazmi napriklad u tokamakah ustanovkah Z pinch Elektrodinamichnij metod presuvannya Sila Ampera i tretij zakon Nyutona RedaguvatiNehaj ye dva tonkih providniki zi strumami I 1 displaystyle I 1 nbsp i I 2 displaystyle I 2 nbsp sho mayut formu krivih C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp yaki zadani radius vektorami r 1 displaystyle mathbf r 1 nbsp i r 2 displaystyle mathbf r 2 nbsp Dlya sil vzayemodiyi neskinchenno malih dilyanok cih providnikiv tretij zakon Nyutona ne vikonuyetsya A same sila Ampera dlya vplivu elementa pershogo providnika na element drugogo d 2 F 12 displaystyle mathrm d 2 mathbf F 12 nbsp ne dorivnyuye vzyatij iz protilezhnim znakom sili sho diye z boku elementa drugogo providnika na element pershogo d 2 F 21 displaystyle mathrm d 2 mathbf F 21 nbsp d 2 F 12 I 2 d r 2 d B 1 r 2 d 2 F 21 I 1 d r 1 d B 2 r 1 displaystyle mathrm d 2 mathbf F 12 I 2 mathrm d mathbf r 2 times mathrm d mathbf B 1 mathbf r 2 neq mathrm d 2 mathbf F 21 I 1 mathrm d mathbf r 1 times mathrm d mathbf B 2 mathbf r 1 nbsp Tut d B 1 displaystyle mathrm d mathbf B 1 nbsp i d B 2 displaystyle mathrm d mathbf B 2 nbsp pole stvoryuvane dilyankoyu pershogo i dilyankoyu drugogo provodu vidpovidno Cej fakt ni v yakomu razi ne komprometuye dinamiki Nyutona oskilki postijnij strum mozhe protikati tilki po zamknutomu konturu i otzhe tretij zakon Nyutona zobov yazanij diyati tilki dlya sil z yakimi vzayemodiyut dva zamknutih providniki zi strumom Na vidminu vid okremih elementiv dlya zamknutih konturiv zakon Nyutona vikonuyetsya F 12 C 2 I 2 d r 2 B 1 r 2 F 21 C 1 I 1 d r 1 B 2 r 1 displaystyle mathbf F 12 oint limits mathbb C 2 I 2 mathrm d mathbf r 2 times mathbf B 1 mathbf r 2 mathbf F 21 oint limits mathbb C 1 I 1 mathrm d mathbf r 1 times mathbf B 2 mathbf r 1 nbsp de B 1 displaystyle mathbf B 1 nbsp i B 2 displaystyle mathbf B 2 nbsp pole stvoryuvane cilkom pershim i cilkom drugim provodom a ne yih okremimi dilyankami Pole v kozhnomu vipadku znahodyat z vikoristannyam formuli Bio Savara Laplasa Detalnishij vikladNehaj ye dva tonkih providniki zi strumami I 1 displaystyle I 1 nbsp i I 2 displaystyle I 2 nbsp sho mayut formu krivih C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp yaki zadani radius vektorami r 1 displaystyle mathbf r 1 nbsp ta r 2 displaystyle mathbf r 2 nbsp Silu sho diye na element strumu odnogo drotu z boku elementa strumu inshogo drotu znahodyat za zakonom Bio Savara Laplasa element strumu I 1 d r 1 displaystyle I 1 mathrm d mathbf r 1 nbsp roztashovanij u tochci lt math gt mathbf r 1 lt math gt stvoryuye v tochci r 2 displaystyle mathbf r 2 nbsp elementarne magnitne pole d B 1 r 2 m 0 4 p I 1 d r 1 r 2 r 1 r 2 r 1 3 displaystyle mathrm d mathbf B 1 mathbf r 2 mu 0 over 4 pi frac I 1 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Za zakonom Ampera sila sho diye z boku polya d B 1 r 2 displaystyle mathrm d mathbf B 1 mathbf r 2 nbsp na element strumu I 2 d r 2 displaystyle I 2 mathrm d mathbf r 2 nbsp roztashovanij u tochci r 2 displaystyle mathbf r 2 nbsp dorivnyuye d 2 F 12 I 2 d r 2 d B 1 r 2 m 0 I 1 I 2 4 p d r 2 d r 1 r 2 r 1 r 2 r 1 3 displaystyle mathrm d 2 mathbf F 12 I 2 mathrm d mathbf r 2 times mathrm d mathbf B 1 mathbf r 2 mu 0 I 1 I 2 over 4 pi frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Element strumu I 2 d r 2 displaystyle I 2 mathrm d mathbf r 2 nbsp roztashovanij u tochci r 2 displaystyle mathbf r 2 nbsp stvoryuye v tochci r 1 displaystyle mathbf r 1 nbsp elementarne magnitne pole d B 2 r 1 m 0 4 p I 2 d r 2 r 1 r 2 r 2 r 1 3 displaystyle mathrm d mathbf B 2 mathbf r 1 mu 0 over 4 pi frac I 2 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 2 mathbf r 1 3 nbsp Sila Ampera sho diye z boku polya d B 2 r 1 displaystyle mathrm d mathbf B 2 mathbf r 1 nbsp na element strumu I 1 d r 1 displaystyle I 1 mathrm d mathbf r 1 nbsp roztashovanij u tochci r 1 displaystyle mathbf r 1 nbsp dorivnyuye d 2 F 21 I 1 d r 1 d B 2 r 1 m 0 I 1 I 2 4 p d r 1 d r 2 r 1 r 2 r 2 r 1 3 displaystyle mathrm d 2 mathbf F 21 I 1 mathrm d mathbf r 1 times mathrm d mathbf B 2 mathbf r 1 mu 0 I 1 I 2 over 4 pi frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 2 mathbf r 1 3 nbsp U zagalnomu vipadku dlya dovilnih r 1 displaystyle mathbf r 1 nbsp i r 2 displaystyle mathbf r 2 nbsp sili d 2 F 12 displaystyle mathrm d 2 mathbf F 12 nbsp i d 2 F 21 displaystyle mathrm d 2 mathbf F 21 nbsp navit ne kolinearni a otzhe ne pidlyagayut tretomu zakonu Nyutona d 2 F 12 d 2 F 21 0 displaystyle mathrm d 2 mathbf F 12 mathrm d 2 mathbf F 21 neq 0 nbsp Cej rezultat odnak ne vkazuye na nespromozhnist dinamiki Nyutona v comu vipadku Zagalom postijnij strum mozhe tekti lishe po zamknutomu konturu Tomu tretij zakon Nyutona maye diyati tilki dlya sil z yakimi vzayemodiyut dva zamknuti providniki zi strumom Mozhna perekonatisya sho dlya takih providnikiv tretij zakon Nyutona vikonuyetsya Nehaj krivi C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp zamknuti Todi strum I 1 displaystyle I 1 nbsp stvoryuye v tochci r 2 displaystyle mathbf r 2 nbsp magnitne pole B 1 r 2 m 0 I 1 4 p C 1 d r 1 r 2 r 1 r 2 r 1 3 displaystyle mathbf B 1 mathbf r 2 mu 0 I 1 over 4 pi oint limits mathbb C 1 frac mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp de integruvannya za C 1 displaystyle C 1 nbsp vikonuyetsya v napryamku strumu I 1 displaystyle I 1 nbsp Sila Ampera sho diye z boku polya B 1 r 2 displaystyle mathbf B 1 mathbf r 2 nbsp na kontur C 2 displaystyle C 2 nbsp zi strumom I 2 displaystyle I 2 nbsp dorivnyuye F 12 C 2 I 2 d r 2 B 1 r 2 C 2 I 2 d r 2 m 0 I 1 4 p C 1 d r 1 r 2 r 1 r 2 r 1 3 m 0 I 1 I 2 4 p C 2 C 1 d r 2 d r 1 r 2 r 1 r 2 r 1 3 displaystyle mathbf F 12 oint limits mathbb C 2 I 2 mathrm d mathbf r 2 times mathbf B 1 mathbf r 2 oint limits mathbb C 2 I 2 mathrm d mathbf r 2 times mu 0 I 1 over 4 pi oint limits mathbb C 1 frac mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 2 oint limits mathbb C 1 frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp de integruvannya za C 2 displaystyle C 2 nbsp vikonuyetsya v napryamku strumu I 2 displaystyle I 2 nbsp Poryadok integruvannya nesuttyevij Analogichno sila Ampera sho diye z boku polya B 2 r 1 displaystyle mathbf B 2 mathbf r 1 nbsp stvoryuvanogo strumom I 2 displaystyle I 2 nbsp na kontur C 1 displaystyle C 1 nbsp zi strumom I 1 displaystyle I 1 nbsp dorivnyuye F 21 C 1 I 1 d r 1 B 2 r 1 m 0 I 1 I 2 4 p C 1 C 2 d r 1 d r 2 r 1 r 2 r 2 r 1 3 C 1 C 2 d 2 F 21 displaystyle mathbf F 21 oint limits mathbb C 1 I 1 mathrm d mathbf r 1 times mathbf B 2 mathbf r 1 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 1 oint limits mathbb C 2 frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 2 mathbf r 1 3 oint limits mathbb C 1 oint limits mathbb C 2 mathrm d 2 mathbf F 21 nbsp Rivnist F 12 F 21 0 displaystyle mathbf F 12 mathbf F 21 0 nbsp ekvivalentna rivnosti C 2 C 1 d r 2 d r 1 r 2 r 1 r 2 r 1 3 C 1 C 2 d r 1 d r 2 r 2 r 1 r 2 r 1 3 displaystyle oint limits mathbb C 2 oint limits mathbb C 1 frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 oint limits mathbb C 1 oint limits mathbb C 2 frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Shob dovesti cyu ostannyu rivnist zauvazhimo sho viraz dlya sili Ampera duzhe shozhij na viraz dlya cirkulyaciyi magnitnogo polya za zamknutim konturom u yakomu zovnishnij skalyarnij dobutok zaminili vektornim dobutkom Koristuyuchis totozhnistyu Lagranzha podvijnij vektornij dobutok u livij chastini rivnosti sho dovoditsya mozhna zapisati tak d r 2 d r 1 r 2 r 1 d r 1 d r 2 r 2 r 1 r 2 r 1 d r 2 d r 1 displaystyle mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathrm d mathbf r 1 nbsp Todi liva chastina rivnosti sho dovoditsya nabude viglyadu C 2 C 1 d r 2 d r 1 r 2 r 1 r 2 r 1 3 C 1 C 2 d r 1 d r 2 r 2 r 1 r 2 r 1 3 C 1 C 2 r 2 r 1 d r 2 d r 1 r 2 r 1 3 displaystyle oint limits mathbb C 2 oint limits mathbb C 1 frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 oint limits mathbb C 1 oint limits mathbb C 2 frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Rozglyanemo okremo integral C 1 C 2 d r 1 d r 2 r 2 r 1 r 2 r 1 3 displaystyle oint limits mathbb C 1 oint limits mathbb C 2 frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp yakij mozhna perepisati v takomu viglyadi C 1 C 2 d r 1 d r 2 r 2 r 1 r 2 r 1 3 C 1 d r 1 C 2 r 2 r 1 d r 2 r 1 r 2 r 1 3 displaystyle oint limits mathbb C 1 oint limits mathbb C 2 frac mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Vikonavshi zaminu zminnoyi u vnutrishnomu integrali na r r 2 r 1 displaystyle mathbf r mathbf r 2 mathbf r 1 nbsp de vektor r displaystyle mathbf r nbsp zminyuyetsya za zamknutim konturom C 2 displaystyle C 2 nbsp viyavimo sho vnutrishnij integral ye cirkulyaciyeyu gradiyentnogo polya za zamknutim konturom Otzhe vin dorivnyuye nulyu C 2 r 2 r 1 d r 2 r 1 r 2 r 1 3 C 2 r d r r 3 C 2 g r a d 1 r d r 0 displaystyle oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 oint limits mathbb C 2 frac mathbf r mathrm d mathbf r mathbf r 3 oint limits mathbb C 2 mathrm grad frac 1 mathbf r mathrm d mathbf r 0 nbsp Otzhe i ves podvijnij krivolinijnij integral dorivnyuye nulyu U takomu razi dlya sili F 12 displaystyle mathbf F 12 nbsp mozhna zapisati F 12 m 0 I 1 I 2 4 p C 1 C 2 r 1 r 2 d r 2 d r 1 r 2 r 1 3 displaystyle mathbf F 12 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 1 mathbf r 2 mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Viraz dlya sili F 21 displaystyle mathbf F 21 nbsp mozhna otrimati z virazu dlya sili F 12 displaystyle mathbf F 12 nbsp prosto z mirkuvan simetriyi Dlya cogo provedemo zaminu indeksiv 2 minyayemo na 1 a 1 na 2 U takomu razi dlya sili F 21 displaystyle mathbf F 21 nbsp mozhna zapisati F 21 m 0 I 1 I 2 4 p C 1 C 2 r 2 r 1 d r 2 d r 1 r 2 r 1 3 displaystyle mathbf F 21 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 3 nbsp Teper cilkom ochevidno sho F 12 F 21 displaystyle mathbf F 12 mathbf F 21 nbsp Otzhe sila Ampera v razi zamknutih providnikiv pidporyadkovana tretomu zakonu Nyutona Deyaki istorichni aspekti RedaguvatiViyavlennya efektu Redaguvati 1820 roku Gans Kristian Ersted vidkriv sho provid yakim ide strum stvoryuye magnitne pole i zmushuye vidhilyatisya strilku kompasa Vin pomitiv sho magnitne pole perpendikulyarne do strumu a ne paralelne jomu yak mozhna bulo b ochikuvati Amper nathnennij demonstraciyeyu doslidu Ersteda viyaviv sho dva paralelni providniki yakimi teche strum prityaguyutsya abo vidshtovhuyutsya zalezhno vid togo v odnomu chi riznih napryamkah po nih teche strum Takim chinom strum ne lishe stvoryuye magnitne pole ale j magnitne pole diye na strum Vzhe cherez tizhden pislya ogoloshennya Erstedom pro svij doslid Amper zaproponuvav poyasnennya providnik diye na magnit cherez te sho v magniti teche strum po bezlichi malenkih zamknutih trayektorij 1 2 Pidbir formuli dlya sili Redaguvati Zakon vzayemodiyi dvoh elementarnih elektrichnih strumiv vidomij yak zakon Ampera naspravdi piznishe zaproponuvav German Grassman tobto jogo bulo b pravilnishe nazivati zakonom Grassmana Originalnij zakon Ampera mav desho inshu formu sila sho diye z boku elementa strumu I 1 d r 1 displaystyle I 1 mathrm d mathbf r 1 nbsp roztashovanogo v tochci r 1 displaystyle mathbf r 1 nbsp na element strumu I 2 d r 2 displaystyle I 2 mathrm d mathbf r 2 nbsp roztashovanij u tochci r 2 displaystyle mathbf r 2 nbsp dorivnyuye d 2 F 12 m 0 I 1 I 2 4 p r 1 r 2 r 1 r 2 3 2 d r 1 d r 2 3 r 1 r 2 d r 1 r 1 r 2 d r 2 r 1 r 2 2 displaystyle mathrm d 2 mathbf F 12 mu 0 I 1 I 2 over 4 pi frac mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 3 left 2 mathrm d mathbf r 1 mathrm d mathbf r 2 3 frac mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathbf r 1 mathbf r 2 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 2 right nbsp Silu sho diye z boku elementa strumu I 2 d r 2 displaystyle I 2 mathrm d mathbf r 2 nbsp roztashovanogo v tochci r 2 displaystyle mathbf r 2 nbsp na element strumu I 1 d r 1 displaystyle I 1 mathrm d mathbf r 1 nbsp roztashovanij u tochci r 1 displaystyle mathbf r 1 nbsp mozhna otrimati z formuli sili d 2 F 12 displaystyle mathrm d 2 mathbf F 12 nbsp prosto z mirkuvan simetriyi zaminivshi indeksi 2 na 1 a 1 na 2 Pri comu d 2 F 21 d 2 F 12 displaystyle mathrm d 2 mathbf F 21 mathrm d 2 mathbf F 12 nbsp tobto originalnij zakon Ampera zadovolnyaye tretomu zakonu Nyutona vzhe v diferencialnij formi Amper pereprobuvavshi nizku viraziv zupinivsya same na takomu Yaksho pri rozglyadi yakoyis zadachi rozrahunku sili vzayemodiyi na dili nestalih nezamknutih strumiv iz porushennyam tretogo zakonu Nyutona miritisya ne mozhna ye variant vikoristati originalnij zakon Ampera U razi zakonu Grassmana pri comu dovoditsya vklyuchati do rozglyadu dodatkovu fizichnu sutnist magnitne pole shob kompensuvati nedotrimannya tretogo zakonu Mozhna dovesti sho v integralnij formi originalnogo zakonu Ampera sili z yakimi vzayemodiyut dva zamkneni providniki z postijnimi strumami vihodyat timi samimi sho j u zakoni Grassmana DovedennyaShob dovesti ce zapishemo silu F 21 displaystyle mathbf F 21 nbsp v takomu viglyadi F 21 m 0 I 1 I 2 4 p C 1 C 2 r 2 r 1 d r 2 d r 1 r 2 r 1 3 m 0 I 1 I 2 4 p C 1 C 2 r 2 r 1 r 2 r 1 3 d r 1 d r 2 3 r 2 r 1 d r 1 r 2 r 1 d r 2 r 1 r 2 2 displaystyle mathbf F 21 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 3 mu 0 I 1 I 2 over 4 pi oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathbf r 2 mathbf r 1 3 mathrm d mathbf r 1 mathrm d mathbf r 2 3 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 2 nbsp Ochevidno shob sila vijshla tiyeyu zh sho j u zakoni Grassmana dostatno dovesti sho drugij dodanok dorivnyuye nulyu Dali drugij dodanok budemo rozglyadati bez zhodnih koeficiyentiv pered znakami integraliv oskilki ci koeficiyenti v zagalnomu vipadku nulyu ne dorivnyuyut i tomu nulyu maye dorivnyuvati sam podvijnij krivolinijnij integral Otzhe poznachimo P C 1 C 2 r 2 r 1 r 1 r 2 3 d r 1 d r 2 3 r 2 r 1 d r 1 r 2 r 1 d r 2 r 1 r 2 2 displaystyle mathbf P oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r 2 mathbf r 1 mathbf r 1 mathbf r 2 3 mathrm d mathbf r 1 mathrm d mathbf r 2 3 frac mathbf r 2 mathbf r 1 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 2 nbsp A dovesti slid sho P 0 displaystyle mathbf P 0 nbsp Pripustimo sho v P displaystyle mathbf P nbsp integruvannya provoditsya spochatku za konturom C 2 displaystyle C 2 nbsp V comu vipadku mozhna zrobiti zaminu zminnoyi r r 2 r 1 displaystyle mathbf r mathbf r 2 mathbf r 1 nbsp de vektor r displaystyle mathbf r nbsp zminyuyetsya za zamknutim konturom C 2 displaystyle C 2 nbsp Todi mozhna zapisati P C 1 C 2 r r 3 d r 1 d r 3 r d r 1 r d r r 2 displaystyle mathbf P oint limits mathbb C 1 oint limits mathbb C 2 frac mathbf r mathbf r 3 mathrm d mathbf r 1 mathrm d mathbf r 3 frac mathbf r mathrm d mathbf r 1 mathbf r mathrm d mathbf r mathbf r 2 nbsp Teper pri integrirovanni za konturom C 2 displaystyle C 2 nbsp otrimayemo deyaku vektornu funkciyu vid r 1 displaystyle mathbf r 1 nbsp yaku potim prointegruyemo za konturom C 1 displaystyle C 1 nbsp Mozhna dovesti sho P displaystyle mathbf P nbsp mozhna podati u viglyadi P C 1 C 2 r g r a d g r a d 1 r d r d r 1 displaystyle mathbf P oint limits mathbb C 1 oint limits mathbb C 2 mathbf r mathrm grad mathrm grad frac 1 mathbf r mathrm d mathbf r mathrm d mathbf r 1 nbsp de obidva gradiyenti berutsya za zminnoyu r displaystyle mathbf r nbsp Dovedennya trivialne dostatno provesti proceduru vzyattya gradiyentiv Dali za totozhnistyu Lagranzha mozhna zapisati g r a d g r a d 1 r d r g r a d 1 r d r d r g r a d 1 r d r g r a d 1 r 0 g r a d 1 r x d x g r a d 1 r y d y g r a d 1 r z d z d g r a d 1 r displaystyle begin aligned amp mathrm grad mathrm grad frac 1 mathbf r mathrm d mathbf r nabla mathrm grad frac 1 mathbf r mathrm d mathbf r mathrm d mathbf r nabla mathrm grad frac 1 mathbf r mathrm d mathbf r nabla mathrm grad frac 1 mathbf r amp 0 partial mathrm grad frac 1 mathbf r over partial x mathrm d x partial mathrm grad frac 1 mathbf r over partial y mathrm d y partial mathrm grad frac 1 mathbf r over partial z mathrm d z mathrm d mathrm grad frac 1 mathbf r end aligned nbsp Tut nul vijshov yak rotor gradiyentnogo polya U rezultati vijshov povnij diferencial vektornoyi funkciyig r a d 1 r displaystyle mathrm grad frac 1 mathbf r nbsp Znachit teper P displaystyle mathbf P nbsp mozhno predstavit v vide P C 1 C 2 r d g r a d 1 r d r 1 displaystyle mathbf P oint limits mathbb C 1 oint limits mathbb C 2 mathbf r mathrm d mathrm grad frac 1 mathbf r mathrm d mathbf r 1 nbsp Cej integral mozhna vzyati prointegruvavshi okremo kozhnu proyekciyu Napriklad prointegruyemo proyekciyu x P x C 1 C 2 x d g r a d 1 r d r 1 C 1 d r 1 C 2 d x g r a d 1 r g r a d 1 r d x displaystyle P x oint limits mathbb C 1 oint limits mathbb C 2 x mathrm d mathrm grad frac 1 mathbf r mathrm d mathbf r 1 oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 mathrm d x mathrm grad frac 1 mathbf r mathrm grad frac 1 mathbf r mathrm d x nbsp Integral vid povnogo diferenciala za bud yakim zamknutim konturom dorivnyuye nulyu C 2 d x g r a d 1 r 0 displaystyle oint limits mathbb C 2 mathrm d x mathrm grad frac 1 mathbf r 0 nbsp tomu P x displaystyle P x nbsp nabude viglyadu P x C 1 d r 1 C 2 g r a d 1 r d x C 1 d r 1 C 2 r 1 r 2 r 1 r 2 3 d x 2 displaystyle P x oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 mathrm grad frac 1 mathbf r mathrm d x oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 frac mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 3 mathrm d x 2 nbsp Cogo razu potribno integruvati spochatku za konturom C 1 displaystyle C 1 nbsp Zrobimo zaminu zminnoyi r r 1 r 2 displaystyle mathbf r mathbf r 1 mathbf r 2 nbsp de vektor r displaystyle mathbf r nbsp zminyuyetsya za zamknutim konturom C 1 displaystyle C 1 nbsp Todi mozhna zapisati P x C 2 d x 2 C 1 d r r r 3 C 2 d x 2 C 1 d r g r a d 1 r 0 displaystyle P x oint limits mathbb C 2 mathrm d x 2 oint limits mathbb C 1 mathrm d mathbf r frac mathbf r mathbf r 3 oint limits mathbb C 2 mathrm d x 2 oint limits mathbb C 1 mathrm d mathbf r mathrm grad frac 1 mathbf r 0 nbsp de gradiyent znovu beretsya za zminnoyu r displaystyle mathbf r nbsp Oskilki u virazi znovu z yavilasya cirkulyaciya gradiyentnogo polya za zamknutim konturom to P x 0 displaystyle P x 0 nbsp Analogichno mozhna zapisati dlya inshih dvoh proyekcij P y C 1 C 2 y d g r a d 1 r d r 1 C 1 d r 1 C 2 d y g r a d 1 r g r a d 1 r d y 0 displaystyle P y oint limits mathbb C 1 oint limits mathbb C 2 y mathrm d mathrm grad frac 1 mathbf r mathrm d mathbf r 1 oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 mathrm d y mathrm grad frac 1 mathbf r mathrm grad frac 1 mathbf r mathrm d y 0 nbsp P z C 1 C 2 z d g r a d 1 r d r 1 C 1 d r 1 C 2 d z g r a d 1 r g r a d 1 r d z 0 displaystyle P z oint limits mathbb C 1 oint limits mathbb C 2 z mathrm d mathrm grad frac 1 mathbf r mathrm d mathbf r 1 oint limits mathbb C 1 mathrm d mathbf r 1 oint limits mathbb C 2 mathrm d z mathrm grad frac 1 mathbf r mathrm grad frac 1 mathbf r mathrm d z 0 nbsp Otzhe P 0 displaystyle mathbf P 0 nbsp Maksvell zaproponuvav najzagalnishu formu zakonu vzayemodiyi dvoh elementarnih providnikiv zi strumom u yakij ye koeficiyent k jogo ne mozhna viznachiti bez deyakih pripushen sho gruntuyutsya na doslidah u yakih aktivnij strum utvoryuye zamknutij kontur 3 d 2 F 12 1 2 m 0 I 1 I 2 4 p 3 k r 1 r 2 d r 1 d r 2 r 1 r 2 3 3 1 k r 1 r 2 r 1 r 2 d r 1 r 1 r 2 d r 2 r 1 r 2 5 1 k d r 1 r 1 r 2 d r 2 r 1 r 2 3 1 k d r 2 r 1 r 2 d r 1 r 1 r 2 3 displaystyle mathrm d 2 mathbf F 12 frac 1 2 mu 0 I 1 I 2 over 4 pi left begin aligned amp 3 k frac mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 3 3 1 k frac mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathbf r 1 mathbf r 2 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 5 amp 1 k frac mathrm d mathbf r 1 mathbf r 1 mathbf r 2 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 3 1 k frac mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathbf r 1 mathbf r 2 3 end aligned right nbsp U vlasnij teoriyi Amper uzyav k 1 displaystyle k 1 nbsp Gaus prijnyav k 1 displaystyle k 1 nbsp yak Grassman i Klauzius U neefirnih elektronnih teoriyah Veber prijnyav k 1 displaystyle k 1 nbsp a Riman prijnyav k 1 displaystyle k 1 nbsp Ritc u svoyij teoriyi zalishiv k displaystyle k nbsp neviznachenim Dlya sili vzayemodiyi dvoh zamknutih konturiv C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp z k 1 displaystyle k 1 nbsp vihodit standartnij viraz Podrobici rozrahunkud 2 F 12 m 0 I 1 I 2 4 p r 1 r 2 d r 1 d r 2 r 1 r 2 3 d r 1 r 1 r 2 d r 2 r 1 r 2 3 d r 2 r 1 r 2 d r 1 r 1 r 2 3 m 0 I 1 I 2 4 p d r 2 d r 1 r 2 r 1 r 1 r 2 3 d r 2 r 1 r 2 d r 1 r 1 r 2 3 displaystyle begin aligned amp mathrm d 2 mathbf F 12 mu 0 I 1 I 2 over 4 pi left frac mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 3 frac mathrm d mathbf r 1 mathbf r 1 mathbf r 2 mathrm d mathbf r 2 mathbf r 1 mathbf r 2 3 frac mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathbf r 1 mathbf r 2 3 right amp mu 0 I 1 I 2 over 4 pi left frac mathrm d mathbf r 2 mathrm d mathbf r 1 mathbf r 2 mathbf r 1 mathbf r 1 mathbf r 2 3 frac mathrm d mathbf r 2 mathbf r 1 mathbf r 2 mathrm d mathbf r 1 mathbf r 1 mathbf r 2 3 right end aligned nbsp Tut pershi dva dodanki ob yednano za totozhnistyu Lagranzha tretij dodanok pri integruvanni za zamknutim konturom C 1 displaystyle C 1 nbsp i C 2 displaystyle C 2 nbsp dast nul Spravdi C 2 C 1 d r 2 r 1 r 2 d r 1 r 1 r 2 3 r r 1 r 2 C mn