www.wikidata.uk-ua.nina.az
Blok shema 1 ce mnozhina razom iz simejstvom pidmnozhin u deyakih vipadkah dozvoleno povtorennya pidmnozhin chleni yakogo zadovolnyayut deyakim vlastivostyam yaki vvazhayutsya korisnimi dlya konkretnogo zastosuvannya Ci zastosuvannya stosuyutsya riznih galuzej zokrema planuvannya eksperimentu skinchennoyi geometriyi testuvannya programnogo zabezpechennya kriptografiyi ta algebrichnoyi geometriyi Rozglyadalosya bagato variantiv ale najintensivnishe vivchalisya zrivnovazheni nepovni blok shemi 1 Balanced Incomplete Block Designs BIBD 2 shemi yaki istorichno pov yazani zi statistichnimi zadachami pri planuvanni eksperimentu 2 3 Blok shemu de vsi bloki mayut odin rozmir nazivayut odnoridnoyu Vsi shemi obgovoryuvani v cij statti odnoridni Poparno zrivnovazheni shemi Pairwise balanced designs PBD ye prikladami blok shem yaki ne obov yazkovo odnoridni Zmist 1 Viznachennya BIBD abo 2 shemi 2 Prikladi 3 Simetrichni BIBD 3 1 Proyektivni ploshini 3 2 Biplanarna geometriya 3 3 2 shemi Adamara 4 Rozkladni 2 shemi 5 Uzagalnennya t shemi 5 1 Pohidni ta rozshiryuvani t shemi 5 1 1 Krugova ploshina 6 Chastkovo zrivnovazheni shemi PBIBD 6 1 Priklad 6 2 Vlastivosti 6 3 PBIBD iz dvoma klasami poyednan 7 Zastosuvannya 7 1 Zastosuvannya v statistici 8 Div takozh 9 Primitki 10 Literatura 11 PosilannyaViznachennya BIBD abo 2 shemi RedaguvatiYaksho zadana skinchenna mnozhina X displaystyle X nbsp elementiv yaki nazivayut tochkami i cili chisla k displaystyle k nbsp r displaystyle r nbsp l 1 displaystyle lambda geqslant 1 nbsp mi viznachayemo 2 shemu B yak simejstvo k displaystyle k nbsp elementnih pidmnozhin mnozhini X displaystyle X nbsp takih sho bud yakij element x displaystyle x nbsp iz X displaystyle X nbsp mistitsya v r displaystyle r nbsp blokah i bud yaka para riznih tochok x displaystyle x nbsp i y displaystyle y nbsp v X displaystyle X nbsp mistitsya v l displaystyle lambda nbsp blokah Slovo simejstvo u viznachenni vishe mozhna zaminiti slovom mnozhina yaksho povtorennya blokiv ne dozvolyayetsya Shemi v yakih povtorennya blokiv zaboroneno nazivayut prostimi Tut v displaystyle v nbsp kilkist elementiv X displaystyle X nbsp zvanih tochkami b displaystyle b nbsp kilkist blokiv k displaystyle k nbsp r displaystyle r nbsp i l displaystyle lambda nbsp ye parametrami shemi Shob uniknuti virodzhenih prikladiv peredbachayetsya sho v gt k displaystyle v gt k nbsp otzhe zhoden blok ne mistit usih elementiv mnozhini Tomu v nazvi shem ye slovo nepovni V tablici v tochki chislo elementiv Xb chislo blokivr chislo blokiv yaki mistyat danu tochkuk chislo tochok u blocil chislo blokiv yaki mistyat bud yaki 2 abo zagalnishe t tochokShemu nazivayut v k l displaystyle v k lambda nbsp shemoyu abo v b r k l displaystyle v b r k lambda nbsp shemoyu Parametri ne ye nezalezhnimi v displaystyle v nbsp k displaystyle k nbsp i l displaystyle lambda nbsp viznachayut b displaystyle b nbsp i r displaystyle r nbsp i ne vsi kombinaciyi v displaystyle v nbsp k displaystyle k nbsp i l displaystyle lambda nbsp dopustimi Dvi osnovni rivnisti sho mistyat ci parametri b k v r displaystyle bk vr nbsp vihodit z pidrahunku par B p displaystyle B p nbsp de B displaystyle B nbsp blok a p displaystyle p nbsp tochka v comu bloci l v 1 r k 1 displaystyle lambda v 1 r k 1 nbsp vihodit z pidrahunku trijok p q B displaystyle p q B nbsp de p displaystyle p nbsp i q displaystyle q nbsp rizni tochki i B displaystyle B nbsp blok sho mistit obidvi tochki i dilennya chisla trijok na v displaystyle v nbsp Ci umovi ne dostatni oskilki napriklad 43 7 1 shemi nemaye 4 Poryadok 2 shemi viznachayut yak n r l displaystyle n r lambda nbsp Dopovnennya 2 shemi otrimuyut zaminoyu kozhnogo bloka jogo dopovnennyam u mnozhini tochok X Dopovnennya ye takozh 2 shemoyu i maye parametri v v displaystyle v v nbsp b b displaystyle b b nbsp r b r displaystyle r b r nbsp k v k displaystyle k v k nbsp l l b 2 r displaystyle lambda lambda b 2r nbsp 2 Shema ta yiyi dopovnennya mayut odnakovij poryadok Fundamendalna teorema nerivnist Fishera nazvana im yam statistika Ronalda Fishera stverdzhuye sho v bud yakij 2 shemi b v displaystyle b geqslant v nbsp U terminah teoriyi grafiv viznachennya 2 shemi mozhna pereformulyuvati tak blok shema ce pokrittya z kratnistyu l displaystyle lambda nbsp povnogo grafa na v displaystyle v nbsp vershinah povnimi grafami na k displaystyle k nbsp vershinah Blok shemi pri k 0 1 displaystyle k 0 1 nbsp i v displaystyle v nbsp trivialni tomu zazvichaj peredbachayetsya sho 2 k n 1 displaystyle 2 leqslant k leqslant n 1 nbsp Prikladi RedaguvatiYedina 6 3 2 shema maye 10 blokiv b 10 i kozhen element povtoryuyetsya 5 raziv r 5 5 Yaksho vikoristovuvati simvoli 0 5 bloki mistyat taki trijki 012 013 024 035 045 125 134 145 234 235 Odna iz chotiroh neizomorfnih 8 4 3 shem maye 14 blokiv u yakih elementi povtoryuyutsya 7 raziv Yaksho vikoristovuvati simvoli 0 7 blokami ye taki chetvirki 5 0123 0124 0156 0257 0345 0367 0467 1267 1346 1357 1457 2347 2356 2456 Yedina 7 3 1 shema maye 7 blokiv u yakih kozhen element povtoreno 3 razi Yaksho vikoristovuvati simvoli 0 6 blokami ye taki trijki 5 013 026 045 124 156 235 346 Yaksho elementi rozglyadayutsya yak tochki na ploshini Fano ci bloki ye pryamimi Simetrichni BIBD RedaguvatiVipadok rivnosti v nerivnosti Fishera tobto 2 shemu z odnakovoyu kilkistyu tochok u blokah nazivayut simetrichnoyu shemoyu 6 Simetrichni shemi mayut najmenshu kilkist blokiv sered usih 2 shem z tim samim chislom tochok U simetrichnij shemi vikonuyetsya r k yak i b v i hocha ce nepravilno dlya dovilnih 2 shem v simetrichnih shemah bud yaki dva riznih bloki mayut spilnimi l tochok 7 Teorema Rajzera en daye zvorotnij visnovok yaksho X ye mnozhinoyu z v elementiv a B naborom z v k elementnih pidmnozhin blokiv takih sho bud yaki dva riznih bloki mayut rivno l spilnih tochok to X B ye simetrichnoyu blok shemoyu 8 Parametri simetrichnoyi shemi zadovolnyayut rivnosti l v 1 k k 1 displaystyle lambda v 1 k k 1 nbsp dd Rivnist nakladaye silne obmezhennya na v tak sho chislo tochok daleke vid dovilnogo Teorema Bruka Rajzera Chovli daye neobhidnu ale ne dostatnyu umovu isnuvannya simetrichnih shem u terminah yih parametriv Nizhche navedeno vazhlivi prikladi simetrichnih 2 shem Proyektivni ploshini Redaguvati Dokladnishe Proyektivna ploshinaSkinchenni proyektivni ploshini ye simetrichnimi 2 shemami z l 1 i poryadkom n gt 1 Dlya cih shem rivnist simetrichnoyi shemi peretvoryuyetsya na v 1 k k 1 displaystyle v 1 k k 1 nbsp dd Oskilki k r mozhna zapisati poryadok proyektivnoyi ploshini yak n k 1 i z navedenoyi vishe rivnosti otrimuyemo v n 1 n 1 n2 n 1 tochok u proyektivnij ploshini poryadku n Oskilki proyektivna ploshina ye simetrichnoyu shemoyu mayemo b v sho oznachaye sho b n 2 n 1 takozh Chislo b ye chislom pryamih proyektivnoyi ploshini Ne mozhe buti povtoryuvanih pryamih oskilki l 1 tak sho proyektivna ploshina ye prostoyu 2 shemoyu v yakij chislo pryamih i tochok zavzhdi rivni Dlya proyektivnoyi ploshini k ye chislom tochok na pryamij i vono dorivnyuye n 1 Analogichno r n 1 ye chislom pryamih z yakimi cya tochka incidentna Dlya n 2 mayemo proyektivnu ploshinu poryadku 2 yaku nazivayut takozh ploshinoyu Fano z v 4 2 1 7 tochkami ta 7 pryamimi Na ploshini Fano bud yaka pryama maye rivno n 1 3 tochok i kozhna tochka nalezhit n 1 3 pryamij Vidomo sho proyektivni ploshini isnuyut dlya vsih poryadkiv rivnih prostim chislam ta yih stepenyam Voni utvoryuyut yedine vidome neskinchenne simejstvo simetrichnih blok shem 9 Biplanarna geometriya Redaguvati Biplanarna geometriya ce simetrichna 2 shema z l 2 Tobto bud yaka mnozhina z dvoh tochok mistitsya u dvoh blokah pryamih a bud yaki dvi pryami peretinayutsya u dvoh tochkah 9 Biplanarni geometriyi analogichni proyektivnim ploshinam krim togo sho dvi tochki ne viznachayut pryamu a dvi pryami ne viznachayut tochku U biplanarnij geometriyi dvi tochki viznachayut dvi pryami vidpovidno dvi pryami viznachayut dvi tochki Biplanarna geometriya poryadku n ce shema bloki yakoyi mayut k n 2 tochok Vsogo zh tochok v 1 n 2 n 1 2 oskilki r k 18 vidomih prikladiv 10 Trivialna shema Biplanarna geometriya poryadku 0 maye 2 tochki i pryami rozmiru 2 2 2 2 2 shema ce dvi tochki ta dva bloki yaki mistyat obidvi tochki Geometrichno ce dvokutnik Biplanarna geometriya poryadku 1 maye 4 tochki i pryami rozmiru 3 2 4 3 2 shema ce povna shema z v 4 ta k 3 Geometrichno tochki ye vershinami a bloki ye granyami tetraedra Biplanarna geometriya poryadku 2 ye dopovnennyam ploshini Fano vona mistit 7 tochok i pryami rozmiru 4 2 7 4 2 shema de pryami zadayutsya yak dopovnennya 3 tochkovih pryamih ploshin Fano 11 Biplanarna geometriya poryadku 3 maye 11 tochok i pryami rozmiru 5 2 11 5 2 shema vidoma yak biplanarna geometriya Peli za im yam Rajmonda Peli en shema pov yazana z grafom Peli poryadku 11 yakij buduyetsya za dopomogoyu polya z 11 elementami i ye 2 shemoyu Adamara pov yazanoyu z matriceyu Adamara rozmiru 12 div stattyu Pobudova Peli Algebrichno ce vidpovidaye osoblivomu vkladennyu proyektivnoyi specialnoyi linijnoyi grupi PSL 2 5 u PSL 2 11 12 Ye tri biplanarni geometriyi poryadku 4 16 tochok pryami rozmiru 6 2 16 6 2 shemi Ci tri shemi ye takozh shemami Menona Ye chotiri biplanarni geometriyi poryadku 7 37 tochok pryami rozmiru 9 2 37 9 2 shemi 13 Ye p yat biplanarnih geometrij poryadku 9 56 tochok pryami rozmiru 11 2 56 11 2 shemi 14 Vidomi dvi biplanarni geometriyi poryadku 11 79 tochok pryami rozmiru 13 2 79 13 2 shemi 15 2 shemi Adamara Redaguvati Matricya Adamara rozmiru m ce m m matricya H elementi yakoyi dorivnyuyut 1 taka sho HH mEm de H transponovana matricya H a Em m m odinichna matricya Matricyu Adamara mozhna podati v standartnij formi tobto zvesti do ekvivalentnoyi matrici Adamara u yakij pershij ryadok i pershij stovpec skladayutsya z 1 Yaksho rozmir m gt 2 m maye dilitisya na 4 Yaksho dana matricya Adamara rozmiru 4a v standartnij formi vidalimo pershij ryadok i pershij stovpec i zaminimo vsi elementi 1 na 0 Otrimayemo matricyu M sho skladayetsya z 0 i 1 yaka ye matriceyu incidentnosti simetrichnoyi 2 4 a 1 2 a 1 a 1 shemi Cyu shemu nazivayut 2 shemoyu Adamara 16 Shema mistit 4 a 1 displaystyle 4a 1 nbsp blokiv kozhen iz yakih mistit 2 a 1 displaystyle 2a 1 nbsp tochok i 4 a 1 displaystyle 4a 1 nbsp tochok yaki mistyatsya v 2 a 1 displaystyle 2a 1 nbsp blokah Kozhna para tochok mistitsya rivno v a 1 displaystyle a 1 nbsp blokah Pobudova oborotna i matricyu incidentnosti simetrichnoyi 2 shemi z cimi parametrami mozhna vikoristati dlya formuvannya matrici Adamara rozmiru 4a Rozkladni 2 shemi RedaguvatiRozkladna utochniti 2 shema ce BIBD bloki yakoyi mozhna rozbiti na mnozhini zvani paralelnimi klasami kozhna z yakih utvoryuye rozdil rozbittya tochok z BIBD Mnozhinu paralelnih klasiv nazivayut rozkladom utochniti shemi Yaksho rozkladna 2 v k l shema maye c paralelnih klasiv to b v c 1 17 Otzhe simetrichna shema ne mozhe mati netrivialnogo bilshe odnogo paralelnogo klasu rozkladu 18 Arhetipovi rozkladni 2 shemi ce skinchenni proyektivni ploshini Rozv yazok znamenitoyi zadachi Kirkmana pro shkolyarok ye rozkladom 2 15 3 1 shemi 19 Uzagalnennya t shemi RedaguvatiYaksho dano dovilne dodatne chislo t t shema B ce klas k elementnih pidmnozhin mnozhini X zvanih blokami takih sho bud yaka tochka x z X z yavlyayetsya rivno v r blokah a bud yaka t elementna pidmnozhina T mistitsya rivno v l blokah Chisla v kilkist elementiv u X b kilkist blokiv k r l i t ye parametrami shemi Shemu mozhna nazvati t v k l shemoyu Znovu zh ci chotiri chisla viznachayut b i r a sami chotiri chisla ne mozhna vibrati dovilno Rivnosti sho yih pov yazuyut l i l v i t i k i t i dlya i 0 1 t displaystyle lambda i lambda left binom v i t i right binom k i t i text dlya i 0 1 ldots t nbsp de li chislo blokiv yaki mistyat bud yaku i elementnu mnozhinu tochok Zauvazhimo sho b l 0 l v t k t displaystyle b lambda 0 lambda v choose t k choose t nbsp Teorema 20 Bud yaka t v k l shema ye takozh s v k ls shemoyu dlya bud yakogo chisla s za umovi 1 s t Zauvazhimo sho znachennya lyambda zminyuyetsya yak vishe zaznacheno i zalezhit vid s Naslidok ciyeyi teoremi bud yaka t shema z t 2 ye takozh 2 shemoyu Shemu t v k 1 nazivayut sistemoyu Shtejnera Sam termin blok shema zazvichaj zastosovuyut do 2 shem Pohidni ta rozshiryuvani t shemi Redaguvati Nehaj D X B t v k l shema i nehaj p tochka mnozhini X Pohidna shema Dp maye mnozhinu tochok X p a yak mnozhinu blokiv usi bloki D yaki mistyat p i v yakih tochku p vidaleno Cya shema ye t 1 v 1 k 1 l shemoyu Zauvazhimo sho pohidni shemi riznih tochok mozhut buti izomorfnimi Shemu E nazivayut rozshirennyam shemi D yaksho E maye tochku p taku sho Ep izomorfna D D nazivayut rozshiryuvanoyu yaksho shema maye rozshirennya Teorema 21 Yaksho t v k l shema maye rozshirennya to k 1 dilit b v 1 Rozshiryuvani proyektivni ploshini simetrichni 2 n 2 n 1 n 1 1 shemi ce tilki ti poryadki yakih dorivnyuyut 2 i 4 22 Bud yaka 2 shema Adamara rozshiryuvana do 3 shemi Adamara 23 Teorema 24 Yaksho D simetrichna 2 v k l shema rozshiryuvana vikonuyetsya odne z D ye 2 shemoyu Adamara v l 2 l 2 4l 2 k l 2 3l 1 v 495 k 39 l 3 Zauvazhimo sho proyektivna ploshina poryadku 2 ye 2 shemoyu Adamara Proektivna ploshina poryadku 4 maye parametri yaki pidpadayut pid vipadok 2 Inshi vidomi simetrichni 2 shemi z parametrami z vipadku 2 biplanarni geometriyi poryadku 9 ale zhodna z nih ne rozshiryuvana Simetrichni 2 shemi z parametrami vipadku 3 nevidomi 25 Krugova ploshina Redaguvati Shemu z parametrami rozshirennya afinnoyi ploshini en tobto 3 n 2 1 n 1 1 shemu nazivayut skinchennoyu krugovoyu ploshinoyu abo ploshinoyu Mebiusa poryadku n Mozhna dati geometrichnij opis deyakih krugovih ploshin bilsh togo vsih vidomih krugovih ploshin Ovoyid en u PG 3 q ye mnozhinoyu z q 2 1 tochok niyaki tri z yakih ne kolinearni Mozhna pokazati sho bud yaka ploshina yaka ye giperploshinoyu v rozmirnosti 3 v PG 3 q peretinaye ovoyid O abo v odnij abo v q 1 tochkah Peretin ovoyida O rozmiru q 1 ploshinoyu ce bloki krugovoyi ploshini poryadku q Bud yaku krugovu ploshinu otrimanu v takij sposib nazivayut yajcepodibnoyu Usi vidomi krugovi ploshini yajcepodibni Prikladom ovoyida ye eliptichna kvadrika en mnozhina nuliv kvadratichnoyi formi x1x2 f x3 x4 dd dd de f nezvidna kvadratichna forma vid dvoh zminnih nad GF q Napriklad f x y x2 xy y2 Yaksho q dorivnyuye neparnomu stepenyu 2 vidomij inshij tip ovoyida ovoyid Suzuki Titsa en Teorema Nehaj q dodatne cile chislo ne menshe 2 a Yaksho q neparne bud yakij ovoyid proyektivno ekvivalentnij eliptichnij kvadrici u proektivnij geometriyi PG 3 q tak sho q ye stepenem prostogo chisla i isnuye yedina yajcepodibna krugova ploshina poryadku q nevidomo pri comu chi isnuyut ne yajcepodibni ploshini b Yaksho q parne to q ye stepenem 2 i bud yaka krugova ploshina poryadku q yajcepodibna mozhlivo isnuyut deyaki nevidomi ovoyidi Chastkovo zrivnovazheni shemi PBIBD Redaguvatin Klas shemi vidnoshennya skladayetsya z mnozhini X rozmiru v razom iz rozbittyam S mnozhini X X na n 1 binarnih vidnoshen R0 R1 Rn Kazhut sho para elementiv perebuvaye u vidnoshenni Ri elementi i poyednuyutsya utochniti Kozhen element z X maye ni i ih poyednan Krim togo R 0 x x x X displaystyle R 0 x x x in X nbsp i nazivayetsya vidnoshennyam totozhnosti Yaksho viznachiti R x y y x R displaystyle R x y y x in R nbsp to z nalezhnosti R rozbittyu S viplivaye nalezhnist R rozbittyu S Yaksho x y R k displaystyle x y in R k nbsp kilkist elementiv z X displaystyle z in X nbsp takih sho x z R i displaystyle x z in R i nbsp i z y R j displaystyle z y in R j nbsp stale dorivnyuye p i j k displaystyle p ij k nbsp i ce chislo zalezhit vid i j k ale ne vid viboru x ta y Shema poyednan kommutativna yaksho p i j k p j i k displaystyle p ij k p ji k nbsp dlya vsih i j i k Bilshist avtoriv pripuskayut cyu vlastivist Chastkovo zrivnovazhena nepovna blok shema z n klasami poyednan PBIBD n ce blok shema zasnovana na mnozhini X z v elementami sho maye b blokiv po k elementiv u kozhnomu v yakij kozhen element z yavlyayetsya v r blokah i dlya yakoyi isnuye shema poyednan z n klasami viznachenimi na X pri comu yaksho elementi x i y i poyednuyutsya dlya 1 i n voni mistyatsya razom rivno v li blokah PBIBD n viznachaye shemu poyednan ale obenene hibne 26 Priklad Redaguvati Nehaj A 3 shema poyednan z troma klasami na mnozhini X 1 2 3 4 5 6 Znachennya elementa tablici i j dorivnyuye s yaksho elementi i i j perebuvayut u vidnoshenni Rs 1 2 3 4 5 61 0 1 1 2 3 3 2 1 0 1 3 2 3 3 1 1 0 3 3 2 4 2 3 3 0 1 1 5 3 2 3 1 0 1 6 3 3 2 1 1 0 Bloki PBIBD 3 zasnovani na A 3 124 134 235 456 125 136 236 456 Parametri ciyeyi PBIBD 3 v 6 b 8 k 3 r 4 ta l 1 l 2 2 ta l 3 1 Takozh dlya shemi spivvidnoshen mayemo n 0 n 2 1 ta n 1 n 3 2 27 Vlastivosti Redaguvati Parametri PBIBD m zadovolnyayut rivnostyam 28 v r b k displaystyle vr bk nbsp i 1 m n i v 1 displaystyle sum i 1 m n i v 1 nbsp i 1 m n i l i r k 1 displaystyle sum i 1 m n i lambda i r k 1 nbsp u 0 m p j u h n j displaystyle sum u 0 m p ju h n j nbsp n i p j h i n j p i h j displaystyle n i p jh i n j p ih j nbsp PBIBD 1 ce BIBD PBIBD 2 v yakij l 1 l 2 takozh ye BIBD 29 PBIBD iz dvoma klasami poyednan Redaguvati Shemi PBIBD 2 vivchalisya najbilshe cherez yihnyu prostotu i korisnist 30 Voni podilyayutsya na shist tipiv 31 yaksho bazuvatisya na provedenij Boze ta Shimamoto klasifikaciyi vidomih todi shem PBIBD 2 32 33 rozbivani na grupi trikutni tipu latinskij kvadrat ciklichni chastkova geometriya inshi Zastosuvannya RedaguvatiBlok shemi v matematici vinikli yak statistichna osnova planuvannya eksperimentu Voni viyavilis korisnimi v dispersijnomu analizi ANOVA Zastosuvannya blok shem u cij galuzi zalishayetsya znachnim Hocha dzherelom buli biologichni zastosuvannya shemi vikoristovuyutsya v bagatoh inshih galuzyah de zdijsnyuyutsya sistematichni porivnyannya takih yak napriklad testuvannya programnogo zabezpechennya Matricya incidentnosti blok shemi daye prirodne dzherelo cikavih blokovih kodiv vikoristovuvanih yak kodi z vipravlennyam pomilok Ryadki matrici incidentnosti vikoristovuyut takozh yak simvoli fazovo impulsnoyi modulyaciyi 34 Zastosuvannya v statistici Redaguvati Pripustimo sho doslidniki raku shkiri hochut pereviriti tri rizni soncezahisni kremi Voni nanosyat dva rizni kremi na verhni storoni ruk piddoslidnih Pislya oprominennya ultrafioletom zapisuyut stupin podraznennya shkiri v terminah sonyachnogo opiku Chislo sposobiv likuvannya 3 kilkist kremiv rozmir bloku dorivnyuye 2 kilkist ruk u lyudini Vidpovidnu shemu BIBD mozhna otrimati yak R funkciyu design bib paketu R package agricolae vona viznachayetsya takoyu tabliceyu Doslid Blok Likuvannya101 1 3102 1 2201 2 1202 2 3301 3 2302 3 1Doslidnik vibiraye parametri blok shemi v 3 k 2 ta l 1 yaki pidstavlyayutsya v R funkciyu Reshta parametriv b i r viznachayutsya avtomatichno Vikoristovuyuchi bazovi vidnoshennya mi obchislyuyemo sho nam shob oderzhati zrivnovazhenu nepovnu blok shemu potribno b 3 blokiv tobto 3 piddoslidnih Poznachivshi bloki A B i C otrimuyemo blok shemu A 2 3 B 1 3 i C 1 2 Vidpovidnu matricyu incidentnosti navedeno v tablici Likuvannya Blok A Blok B Blok C1 0 1 12 1 0 13 1 1 0Kozhne likuvannya mistitsya u 2 blokah tak sho r 2 Tilki odin blok C mistit likuvannya 1 i 2 odnochasno i te zh same dlya par likuvannya 1 3 i 2 3 Tomu l 1 U comu prikladi nemozhlivo vikoristati povnu shemu vsi likuvannya v kozhnomu bloci oskilki ye 3 kremi i lishe po 2 ruki v kozhnogo viprobuvanogo Div takozh RedaguvatiGeometriya incidentnosti Linijnij prostir geometriya Sistema ShtejneraPrimitki Redaguvati a b Sintez kombinatornih sistem za dopomogoyu bagatovimirnih v yazanok Academic Journals and Conferences science lpnu ua Procitovano 17 veresnya 2022 Colbourn Dinitz 2007 s 17 19 Stinson 2003 s 1 Dovedennya naviv Tarri 1900 roku yakij pokazav sho ne isnuye pari ortogonalnih latinskih kvadrativ poryadku 6 2 Shema zi zaznachenimi parametrami ekvivalentna isnuvannyu p yati vzayemno ortogonalnih latinskih kvadrativ poryadku 6 a b v Colbourn Dinitz 2007 s 27 Ci shemi nazivayut takozh proyektivnimi shemami abo kvadratnimi shemami Ci alternativni nazvi vikoristovuvalisya u sprobi zaminiti termin simetrichna oskilki nemaye nichogo simetrichnogo u zvichajnomu sensi termina v cih shemah Termin proyektivni vikoristav P Dembovski Dembowski 1968 za analogiyeyu z najzagalnishim prikladom proyektivnimi ploshinami Termin kvadratni vikoristav P Kemeron Cameron van Lint 1991 sho vidbivaye rivnist v b dlya matrici incidentnosti Zhoden iz terminiv ne poshirivsya yak zamina i shemi prodovzhuyut nazivati simetrichnimi Stinson 2003 s 23 teorema 2 2 Ryser 1963 s 102 104 a b Hughes Piper 1985 s 109 Hall 1986 s 320 335 Assmus Key 1992 s 55 Martin Singerman 2008 s 4 Salwach Mezzaroba 1978 Kaski Ostergard 2008 Aschbacher 1971 s 279 281 Stinson 2003 s 74 teorema 4 5 Hughes Piper 1985 s 156 teorema 5 4 Hughes Piper 1985 s 158 naslidok 5 5 Beth Jungnickel Lenz 1986 s 40 priklad 5 8 Stinson 2003 s 203 naslidok 9 6 Hughes Piper 1985 s 29 Cameron van Lint 1991 s 11 tverdzhennya 1 34 Hughes Piper 1985 s 132 teorema 4 5 Cameron van Lint 1991 s 11 teorema 1 35 Colbourn Dinitz 2007 s 114 zauvazhennya 6 35 Street Street 1987 s 237 Street Street 1987 s 238 Street Street 1987 s 240 lema 4 Colbourn Dinitz 2007 s 562 zauvazhennya 42 3 4 Street Street 1987 s 242 Ce ne matematichna klasifikaciya oskilki odin iz tipiv inshi Bose Shimamoto 1952 Raghavarao 1988 s 127 Noshad Brandt Pearce 2012 s 968 971 Literatura RedaguvatiMichael Aschbacher On collineation groups of symmetric block designs Journal of Combinatorial Theory Series A 1971 T 11 vip 3 23 zhovtnya S 272 281 DOI 10 1016 0097 3165 71 90054 9 E F Assmus J D Key Designs and Their Codes Cambridge Cambridge University Press 1992 ISBN 0 521 41361 3 Thomas Beth Dieter Jungnickel Hanfried Lenz Design Theory Cambridge Cambridge University Press 1986 ISBN 978 0 521 44432 3 R C Bose A Note on Fisher s Inequality for Balanced Incomplete Block Designs Annals of Mathematical Statistics 1949 23 zhovtnya S 619 620 R C Bose T Shimamoto Classification and analysis of partially balanced incomplete block designs with two associate classes Journal of the American Statistical Association 1952 T 47 23 zhovtnya S 151 184 DOI 10 1080 01621459 1952 10501161 P Cameron J H van Lint Designs Graphs Codes and their Links Cambridge University Press 1991 T 22 London Mathematical Society Student Texts ISBN 978 0 521 41325 1 Charles J Colbourn Jeffrey H Dinitz Handbook of Combinatorial Designs Boca Raton Chapman amp Hall CRC 2007 ISBN 1 58488 506 8 R A Fisher An examination of the different possible solutions of a problem in incomplete blocks Annals of Eugenics 1940 T 10 23 zhovtnya S 52 75 Marshall Hall Jr Combinatorial Theory New York Wiley Interscience 1986 ISBN 0 471 09138 3 D R Hughes E C Piper Design theory Cambridge Cambridge University Press 1985 ISBN 0 521 25754 9 Petteri Kaski Patric Ostergard There Are Exactly Five Biplanes with k 11 Journal of Combinatorial Designs 2008 T 16 vip 2 23 zhovtnya S 117 127 DOI 10 1002 jcd 20145 E S Lander Symmetric Designs An Algebraic Approach Cambridge Cambridge University Press 1983 C C Lindner C A Rodger Design Theory Boca Raton CRC Press 1997 ISBN 0 8493 3986 3 Damaraju Raghavarao Constructions and Combinatorial Problems in Design of Experiments New York Dover 1988 Damaraju Raghavarao L V Padgett Block Designs Analysis Combinatorics and Applications World Scientific 2005 Herbert John Ryser Chapter 8 Combinatorial Designs Combinatorial Mathematics Carus Monograph 14 Mathematical Association of America 1963 Chester J Salwach Joseph A Mezzaroba The four biplanes with k 9 Journal of Combinatorial Theory Series A 1978 T 24 vip 2 23 zhovtnya S 141 145 DOI 10 1016 0097 3165 78 90002 X S S Shrikhande Bhat Nayak Vasanti N Non isomorphic solutions of some balanced incomplete block designs I Journal of Combinatorial Theory 1970 23 zhovtnya Douglas R Stinson Combinatorial Designs Constructions and Analysis New York Springer 2003 ISBN 0 387 95487 2 Anne Penfold Street Deborah J Street Combinatorics of Experimental Design Oxford U P Clarendon 1987 S 400 xiv ISBN 0 19 853256 3 J H van Lint R M Wilson A Course in Combinatorics Cambridge Cambridge University Press 1992 Pablo Martin David Singerman From Biplanes to the Klein quartic and the Buckyball 2008 April 17 Mohammad Noshad Maite Brandt Pearce Expurgated PPM Using Symmetric Balanced Incomplete Block Designs IEEE Communications Letters 2012 T 16 vip 7 Jul DOI 10 1109 LCOMM 2012 042512 120457 P Dembowski Finite Geometries Springer 1968 Posilannya RedaguvatiDesignTheory Org bazi danih kombinatornih statistichnih ta eksperimentalnih blok shem Programi ta inshi resursi shkoli matematichnih nauk u Queen Mary College Londonskij universitet Design Theory Resources storinka Pitera Kemerona pro vebresursi z teoriyi shem Weisstein Eric W Blok shemi angl na sajti Wolfram MathWorld Otrimano z https uk wikipedia org w index php title Blok shema matematika amp oldid 37522986