www.wikidata.uk-ua.nina.az
Yegipetskij drib v matematici suma riznih odinichnih drobiv tipu 1 n displaystyle frac 1 n napriklad 1 2 1 3 1 16 displaystyle tfrac 1 2 tfrac 1 3 tfrac 1 16 Tak sho kozhen drib ye virazom v yakomu chiselnik dorivnyuye 1 a znamennik dodatne cile chislo prichomu tak sho znamenniki vsi rizni Suma virazu takogo tipu ce dodatne racionalne chislo a b napriklad suma vishenavedenogo yegipetskogo drobu 43 48 Kozhne dodatne racionalne chislo mozhe buti predstavlene u viglyadi yegipetskogo drobu Sumi takogo tipu ta podibni yim z dodankami 2 3 i 3 4 vikoristovuvali starodavni yegipetski matematiki dlya zapisu racionalnih chisel yih prodovzhuvali vikoristovuvati i piznishi civilizaciyi azh do serednih vikiv Zvichajni drobi ta desyatkovi drobi z chasom vitisnili yegipetski drobi zi vzhitku Vse zh yegipetski drobi zalishayutsya ob yektom doslidzhen suchasnoyi teoriyi chisel ta rozvazhalnoyi matematiki a takozh v istorichnih studiyah starodavnoyi matematiki Zmist 1 Istoriya 1 1 Starodavnij Yegipet 1 2 Antichnist i Serednovichchya 1 3 Algoritm Fibonachchi 1 4 Rozklad Engelya 2 Suchasna teoriya chisel 3 Vidkriti problemi 4 Literatura 5 PosilannyaIstoriya RedaguvatiStarodavnij Yegipet Redaguvati Dodatkovu informaciyu za danim pitannyam div v Yegipetska sistema chislennya Yegipetski drobi buli vinajdeni i vpershe vikoristani v starodavnomu Yegipti Odnim z pershih vidomih zgadok pro yegipetski drobi ye matematichnij papirus Rinda Tri bilsh davnih teksti v yakih zgaduyutsya yegipetski drobi ce Yegipetskij matematichnij shkiryanij suvij moskovskij matematichnij papirus i derev yana tablichka Ahmim Papirus Rinda buv napisanij pisarem Ahmesom v epohu Drugogo perehidnogo periodu vin vklyuchaye tablicyu yegipetskih drobiv dlya racionalnih chisel vidu 2 n a takozh 84 matematichni zadachi yih rishennya ta vidpovidi zapisani u viglyadi yegipetskih drobiv Yegiptyani stavili iyeroglif er odin z abo re rot nad chislom dlya poznachennya odinichnogo drobu v zvichajnomu zapisi a v svyashennih tekstah vikoristovuvali liniyu Napriklad 1 3 displaystyle frac 1 3 nbsp 1 10 displaystyle frac 1 10 nbsp U nih takozh buli specialni simvoli dlya drobiv 1 2 2 3 i 3 4 yakimi mozhna bulo zapisuvati takozh inshi drobi bilshi za 1 2 1 2 displaystyle frac 1 2 nbsp 2 3 displaystyle frac 2 3 nbsp 3 4 displaystyle frac 3 4 nbsp Yegiptyani takozh vikoristovuvali i inshi formi zapisu osnovani na iyeroglifi Oko Gora dlya predstavlennya specialnogo naboru drobiv vidu 1 2k dlya k 1 2 6 tobto dvoelementnih racionalnih chisel Taki drobi vikoristovuvalisya razom z inshimi formami zapisi yegipetskih drobiv dlya togo shob podiliti hekat 4 785 l osnovnu miru obsyagu v Davnomu Yegipti Cej kombinovanij zapis takozh vikoristovuvavsya dlya vimiryuvannya ob yemu zerna hlib a ta piva Yaksho pislya zapisu kilkosti u viglyadi drobu Oka Goru zalishavsya yakijs zalishok jogo zapisuvali v zvichajnomu viglyadi kratno ro odinici vimiru rivnij 1 320 Hekat Napriklad tak 1 331 displaystyle frac 1 331 nbsp Pri comu rot mistivsya pered usima iyeroglifami Antichnist i Serednovichchya Redaguvati Yegipetski drobi prodovzhuvali vikoristovuvatisya v starodavnij Greciyi i zgodom matematikami vsogo svitu do Serednovichchya nezvazhayuchi na nayavni do nih zauvazhennya starodavnih matematikiv napriklad Klavdij Ptolemej govoriv pro nezruchnist vikoristannya yegipetskih drobiv v porivnyanni z Vavilonskoyu sistemoyu Vazhlivu robotu v doslidzhenni yegipetskih drobiv proviv matematik XIII stolittya Fibonachchi u svoyij praci Liber Abaci Osnovna tema Liber Abaci obchislennya sho vikoristovuyut desyatkovi i zvichajni drobi sho vitisnili z chasom yegipetski drobi Fibonachchi vikoristovuvav skladnij zapis drobiv sho vklyuchav zapis chisel zi zmishanoyu pidstavoyu i zapis u viglyadi sum drobiv chasto vikoristovuvalisya i yegipetski drobi Takozh u knizi buli navedeni algoritmi perekladu zi zvichajnih drobiv v yegipetski Algoritm Fibonachchi Redaguvati Pershij metod rozkladannya dovilnogo drobu na yegipetski skladovi opisav Fibonachchi v XIII stolitti U suchasnomu zapisi jogo algoritm mozhna viklasti takim chinom 1 Drib m n displaystyle frac m n nbsp rozkladayetsya na 2 dodanki m n 1 n m n mod m n n m displaystyle frac m n frac 1 lceil n m rceil frac n bmod m n lceil n m rceil nbsp Tut n m displaystyle lceil n m rceil nbsp chastka vid dilennya n na m okruglene do cilogo v bilshu storonu a n mod m displaystyle n bmod m nbsp dodatnya ostacha vid dilennya n na m 2 Pershij dodanok u pravij chastini vzhe maye viglyad yegipetskogo drobu Z formuli vidno sho chiselnik drugogo dodanka strogo menshe nizh u vihidnogo drobu Analogichno za tiyeyu zh formuloyu rozklademo drugij dodanok i prodovzhimo cej proces poki ne otrimayemo dodanok z chiselnikom 1 Metod Fibonachchi zavzhdi shoditsya pislya kincevogo chisla krokiv i daye rozkladannya yake shukali Priklad 7 15 1 3 2 15 1 3 1 8 1 120 displaystyle frac 7 15 frac 1 3 frac 2 15 frac 1 3 frac 1 8 frac 1 120 nbsp Ale otrimane takim metodom rozkladannya mozhe viyavitisya ne najkorotshim Priklad jogo nevdalogo zastosuvannya 5 121 1 25 1 757 1 763309 1 873960180913 1 1527612795642093418846225 displaystyle frac 5 121 frac 1 25 frac 1 757 frac 1 763309 frac 1 873960180913 frac 1 1527612795642093418846225 nbsp v toj chas yak bilsh doskonali algoritmi prizvodyat do rozkladannya 5 121 1 33 1 121 1 363 displaystyle frac 5 121 frac 1 33 frac 1 121 frac 1 363 nbsp Rozklad Engelya Redaguvati Dokladnishe Rozklad EngelyaRozklad Engelya ye she odnim metodom predstavlennya chisel u viglyadi yegipetskogo drobu Isnuye kilka algoritmiv vikonannya takogo rozkladu Suchasna teoriya chisel RedaguvatiSuchasni matematiki prodovzhuyut doslidzhuvati ryad zadach pov yazanih z yegipetskimi drobom V kinci minulogo stolittya bulo dano ocinki maksimalnogo znamennika i dovzhini rozkladannya dovilnogo drobu v yegipetski Drib x y maye rozkladannya v yegipetski drobi z maksimalnim znamennikom ne bilsheO y log 2 y log log y displaystyle O left frac y log 2 y log log y right nbsp dd i z chislom dodankiv ne bilshe O log y displaystyle O left sqrt log y right nbsp dd Gipoteza Erdesha Grehema en stverdzhuye sho dlya vsyakoyi rozmalovki cilih chisel bilshih 1 v r gt 0 koloriv isnuye kinceve odnokolorove pidmnozhina S cilih chisel takih sho n S 1 n 1 displaystyle sum n in S 1 n 1 nbsp dd Cya gipoteza dovedena Ernestom Krutom en v 2003 roci Vidkriti problemi RedaguvatiYegipetski drobi stavlyat ryad vazhkih i donini nevirishenih matematichnih problem Gipoteza Erdesha Strausa en stverdzhuye sho dlya bud yakogo cilogo chisla n 2 isnuyut dodatni cili x y i z taki sho4 n 1 x 1 y 1 z displaystyle frac 4 n frac 1 x frac 1 y frac 1 z nbsp Komp yuterni eksperimenti pokazuyut sho gipoteza virna dlya vsih n 1014 ale dokaz poki ne znajdeno Uzagalnennya ciyeyi gipotezi stverdzhuye sho dlya bud yakogo dodatnogo k isnuye N take sho dlya vsih n N isnuye rozkladannyak n 1 x 1 y 1 z displaystyle frac k n frac 1 x frac 1 y frac 1 z nbsp Cya gipoteza nalezhit Andzheyu Shincelyu en Literatura RedaguvatiVan der Varden Probuzhdayushayasya nauka Matematika drevnego Egipta Vavilona i Grecii Arhivovano 27 bereznya 2009 u Wayback Machine Perevod s gollandskogo N Veselovskogo M Fizmatgiz 1959 456 s Reprint M URSS 2007 Nejgebauer O Lekcii po istorii antichnyh matematicheskih nauk Dogrecheskaya matematika T 1 M L ONTI 1937 Nejgebauer O Tochnye nauki v drevnosti M Nauka 1968 Reprint M URSS 2003 Raik A E Ocherki po istorii matematiki v drevnosti Saransk Mordovskoe gos izd vo 1977 Raik A E K istorii egipetskih drobej Istoriko matematicheskie issledovaniya 23 1978 s 181 191 Yanovskaya S A K teorii egipetskih drobej Trudy Instituta istorii estestvoznaniya 1 1947 s 269 282 Beeckmans L 1993 The splitting algorythm for Egyptian fractions Journal of Number Theory 43 173 185 Botts Truman 1967 A chain reaction process in number theory Mathematics Magazine 55 65 Breusch R 1954 A special case of Egyptian fractions solution to advanced problem 4512 American Mathematical Monthly 61 200 201 Bruins Evert M 1957 Platon et la tabl egyptienne 2 n Janus 46 253 263 Eves Howard 1953 An Introduction to the History of Mathematics Holt Reinhard and Winston 0 03 029558 0 Gillings Richard J 1982 Mathematics in the Time of the Pharaohs Dover ISBN 0 486 24315 X Graham R L 1964 On finite sums of reciprocals of distinct nth powers Pacific Journal of Mathematics 14 1 85 92 Arhiv originalu za 22 listopada 2009 Procitovano 28 travnya 2014 Hultsch Friedrich 1895 Die Elemente der agyptischen Theilungsrechnung Leipzig S Hirzel Knorr Wilbur R 1982 Techniques of fractions in ancient Egypt and Greece Historia Mathematica 9 133 171 Luneburg Heinz 1993 Leonardi Pisani Liber Abbaci oder Lesevergnugen eines Mathematikers Mannheim B I Wissenschaftsverlag ISBN 3 411 15461 6 Martin G 1999 Dense Egyptian fractions Transactions of the American Mathematical Society 351 3641 3657 Menninger Karl W 1969 Number Words and Number Symbols A Cultural History of Numbers MIT Press ISBN 0 262 13040 8 Robins Gay Shute Charles 1990 The Rhind Mathematical Papyrus An Ancient Egyptian Text Dover ISBN 0 486 26407 6 Stewart B M 1954 Sums of distinct divisors American Journal of Mathematics 76 779 785 Stewart I 1992 The riddle of the vanishing camel Scientific American June 122 124 Struik Dirk J 1967 A Concise History of Mathematics Dover s 20 25 ISBN 0 486 60255 9 Takenouchi T 1921 On an indeterminate equation Proc Physico Mathematical Soc of Japan 3rd ser 3 78 92 Tenenbaum G Yokota H 1990 Length and denominators of Egyptian fractions Journal of Number Theory 35 150 156 Vose M 1985 Egyptian fractions Bulletin of the London Mathematical Society 17 21 Wagon S 1991 Mathematica in Action W H Freeman s 271 277 Posilannya RedaguvatiDevid Eppshtejn Egyptian Fractions Arhiv originalu za 19 lyutogo 2012 Procitovano 28 travnya 2014 Egyptian fractions Arhiv originalu za 19 lyutogo 2012 Procitovano 28 travnya 2014 Mathematics in Egyptian Papyri 2000 Arhiv originalu za 19 lyutogo 2012 Procitovano 28 travnya 2014 Otrimano z https uk wikipedia org w index php title Yegipetskij drib amp oldid 40290869