www.wikidata.uk-ua.nina.az
Trikutnik Paskalya ce geometrichno na zrazok trikutnika rozmisheni binomialni koeficiyenti Ce matematichne ponyattya nazvano na chest Bleza Paskalya Taku nazvu vzhivayut perevazhno v zahidnomu sviti adzhe matematiki Indiyi Persiyi Kitayu ta Italiyi znali cej trikutnik she za kilka stolit pered Paskalem Pershi p yat ryadiv trikutnika PaskalyaRyadi trikutnika Paskalya umovno pronumerovani zgori pochinayuchi z nulovogo j chisla v nizhnomu ryadi vidnosno chisel u poperednomu ryadi zavzhdi rozmisheni stupinchasto j navskis Pobuduvati cej trikutnik prosto Kozhne chislo v kozhnomu ryadi oderzhuyemo dodavshi dva chisla rozmisheni vgori zliva i sprava Yaksho zliva abo sprava nemaye chisla pidstavlyayemo nul na jogo misce Napriklad pershe chislo v pershomu ryadi 0 1 1 todi yak chisla 1 i 3 v tretomu ryadi utvoryuyut chislo 4 v chetvertomu ryadi 1 3 4 Pravilo Paskalya stverdzhuye yaksho n k n k n k displaystyle n choose k frac n k n k k j binomialnij koeficiyent v binomialnomu ryadi dlya x y n todi n k n 1 k 1 n 1 k displaystyle n choose k n 1 choose k 1 n 1 choose k dlya bud yakogo dodatnogo cilogo n i bud yakogo cilogo k mizh 0 i n Zmist 1 Shabloni i vlastivosti 1 1 Ryadki 1 2 Diagonali 1 3 Zagalni shabloni i vlastivosti 2 Binomialni koeficiyenti 3 Div takozh 4 Primitki 5 PosilannyaShabloni i vlastivosti RedaguvatiTrikutnik Paskalya maye bagato vlastivostej i mistit bagato chislovih shabloniv nbsp Kozhen kadr predstavlyaye ryadok trikutnika Paskalya Kozhen stovpchik ce chislo u dvijkovomu viglyadi z najmensh znachimim bitom vnizu Svitli pikseli predstavlyayut odinichki i temni nuli Ryadki Redaguvati Suma elementiv kozhnogo ryadka ye podvoyena suma poperednogo Ce tomu sho kozhen element ryadka tvorit dva elementi nastupnogo ryadka Suma elementiv ryadka n dorivnyuye 2n Dobutok elementiv ryadka poslidovnist takih dobutkiv poslidovnist A001142 z Onlajn enciklopediyi poslidovnostej cilih chisel OEIS stosuyetsya osnovi naturalnogo logarifma e 1 2 A same viznachimo poslidovnist sn tak s n k 0 n n k k 0 n n k n k n 0 displaystyle s n prod k 0 n binom n k prod k 0 n frac n k n k n geq 0 nbsp dd Todi spivvidnoshennya poslidovnih dobutkiv ryadkiv yes n 1 s n n 1 n 2 k 0 n 1 k 2 n n 1 k 0 n k 2 n 1 n n displaystyle frac s n 1 s n frac n 1 n 2 prod k 0 n 1 k 2 n n 1 prod k 0 n k 2 frac n 1 n n nbsp dd i spivvidnoshennya cih spivvidnoshen ye s n 1 s n 1 s n 2 n 1 n n n 1 displaystyle frac s n 1 s n 1 s n 2 left frac n 1 n right n n geq 1 nbsp dd Pravij bik cogo rivnyannya nabuvaye formi viznachennya e cherez granicyue lim n 1 1 n n displaystyle textit e lim n to infty left 1 frac 1 n right n nbsp dd Znachennya ryadka yaksho kozhen element rozglyadati yak desyatkovij rozryad i chisla bilshi nizh 9 perenositi vidpovidno ye stepenem 11 11n dlya ryadka n Otzhe u ryadku 2 1 2 1 staye 112 todi yak 1 5 10 10 5 1 u p yatomu ryadku staye pislya perenesen 161 051 tobto 115 Cyu vlastivist poyasnyuyut vstanovlyuyuchi x 10 u binomialnomu rozkladi x 1 n i pripasovuyuchi znachennya do desyatkovoyi sistemi Ale x mozhna obrati tak shob ryadki predstavlyali znachennya v bud yakij osnovi U trijkovij 1 2 13 42 16 1 3 3 1 2 1 0 13 43 64 Za osnovoyu 9 1 2 19 102 100 1 3 3 19 103 1000 1 5 10 10 5 1 1 6 2 1 5 19 105 100000 Zokrema dlya x 1 znachennya v poziciyah zalishayutsya stalimi 1poziciya 1 Otzhe yih mozhna prosto dodati Suma kvadrativ elementiv ryadka n dorivnyuye serednomu elementu ryadka 2n Napriklad 12 42 62 42 12 70 U zagalnij formi k 0 n n k 2 2 n n displaystyle sum k 0 n n choose k 2 2n choose n nbsp dd Inshim cikavim shablonom ye te sho dlya bud yakogo ryadka n de n ye parnim serednij element minus element na dvi poziciyi livoruch dorivnyuye chislu Katalana a same n 2 1 mu chislu Katalana Napriklad na chetvertomu ryadku 6 1 5 sho ye tretim chislom Katalana i 4 2 1 3 Takozh cikavoyu vlastivistyu ye te sho v ryadku p de p ce proste chislo vsi elementi ryadka dilyatsya na p Ce mozhna legko dovesti oskilki yaksho p P displaystyle p in mathbb P nbsp todi p ne maye dilnikiv okrim 1 i sebe Kozhen element trikutnika ce cile chislo todi za viznachennyam p k displaystyle p k nbsp i k displaystyle k nbsp ce dilniki p displaystyle p nbsp Odnak vlasne p ne mozhe z yavitis u dilniku otzhe p abo jogo kratne povinno zalishitis u chiselniku Parnist Shob porahuvati kilkist neparnih chisel u ryadku n perevedit n u dvijkovu sistemu Nehaj x bude kilkistyu odinichok u dvijkovomu predstavlenni Todi kilkist neparnih elementiv bude 2x 3 Kozhen element u ryadku 2n 1 n 0 ye neparnim 4 Polyarnist Inshij cikavij shablon kozhen parnij ryadok trikutnika Paskalya dorivnyuye nulyu yaksho vzyati serednij element potim vidnyati cili nastupni bilya centralnogo todi dodati nastupni cili i t d Priklad ryadok 4 takij 1 4 6 4 1 otzhe formula bude taka 6 4 4 1 1 0 ryadok 6 takij 1 6 15 20 15 6 1 tomu mayemo 20 15 15 6 6 1 1 0 Diagonali Redaguvati Diagonali trikutnika Paskalya mistyat figurni chisla simpleksiv Diagonali uzdovzh livogo i pravogo reber mistyat lishe 1 ci Nastupni diagonali mistyat naturalni chisla po poryadku Ruhayuchis dali nastupna para diagonalej mistit trikutni chisla po poryadku Nastupna para diagonalej mistit tetraedrichni chisla po poryadku i nastupna daye chisla p yatiklitinnika Zagalni shabloni i vlastivosti Redaguvati nbsp Trikutnik SerpinskogoShablon otrimanij farbuvannyam lishe neparnih chisel u trikutniku Paskalya duzhe nagaduye fraktal vidomij yak trikutnik Serpinskogo Cya shozhist staye vse bilsh tochnoyu z dodavannyam novih ryadkiv pri perehodi do granici koli kilkist ryadkiv nablizhayetsya do neskinchennosti rezultovnij shablon ye trikutnikom Serpinskogo 5 Zagalnishe chisla mozhna rozfarbovuvati riznomanitno vidpovidno do togo chi dilyatsya voni na 3 4 i t d ce daye podibni shabloni nbsp Trikutnik Paskalya vikladenij na shahivnici daye kilkist vidminnih shlyahiv do kozhnoyi komirki yaksho dozvoleni lishe kroki pravoruch i dodolu Yaksho ryadki trikutnika Paskalya virivnyati po livomu boku todi diagonalni smugi vidileni kolorom sumuyutsya u chisla Fibonachchi 11 11 2 11 3 3 11 4 6 4 11 5 10 10 5 11 6 15 20 15 6 11 7 21 35 35 21 7 1 dd Binomialni koeficiyenti RedaguvatiTrikutnik Paskalya viznachaye koeficiyenti sho vinikayut pri binomialnomu rozkladi Napriklad a b 2 a2 2ab b2 1a2b0 2a1b1 1a0b2 Zvernemo uvagu sho utvoreni koeficiyenti ce chisla v drugomu ryadku trikutnika Paskalya Zazvichaj koli mi pidnosimo do cilogo dodatnogo stepenya n polinom viglyadu a b mi mayemo a b n c0an c1an 1b c2an 2b2 cn 1abn 1 cnbn de koeficiyenti ci ce chisla v n mu ryadku trikutnika Paskalya Inshimi slovami c i n i displaystyle c i n choose i nbsp Mozhna pobachiti sho mi otrimali binomialnu teoremu Zvernemo uvagu sho vsya diagonal trikutnika sprava vidpovidaye koeficiyentu pered bn nastupna diagonal vidpovidaye koeficiyentu pered abn 1 i tak dali Dlya togo shob pobachiti yak binomialna teorema bezposeredno vidnositsya do trikutnika Paskalya rozglyanemo yak rahuyutsya koeficiyenti pered elementom a 1 n de b 1 a 1 n i 0 n c i a i displaystyle a 1 n sum i 0 n c i a i nbsp Rozglyanemo a 1 n 1 a 1 a 1 n a a 1 n a 1 n i 0 n c i a i 1 i 0 n c i a i displaystyle a 1 n 1 a 1 a 1 n a a 1 n a 1 n sum i 0 n c i a i 1 sum i 0 n c i a i nbsp Ci dvi sumi mozhut buti zapisani nastupnim chinom i 0 n c i a i 1 i 0 n c i a i i 1 n 1 c i 1 a i i 0 n c i a i i 1 n c i 1 a i i 1 n c i a i c 0 a 0 c n a n 1 i 1 n c i 1 c i a i c 0 a 0 c n a n 1 i 1 n c i 1 c i a i a 0 a n 1 displaystyle begin aligned amp sum i 0 n c i a i 1 sum i 0 n c i a i amp sum i 1 n 1 c i 1 a i sum i 0 n c i a i amp sum i 1 n c i 1 a i sum i 1 n c i a i c 0 a 0 c n a n 1 amp sum i 1 n c i 1 c i a i c 0 a 0 c n a n 1 amp sum i 1 n c i 1 c i a i a 0 a n 1 end aligned nbsp Teper mi mayemo viraz dlya mnogochleniv viglyadu a 1 n 1 v terminah koeficiyentiv dlya a 1 n Ce i ye te sho nam potribno Nagadayemo sho vsi chisla na diagonali sho jdut vid verhnogo livogo do nizhnogo pravogo vidpovidayut koeficiyentam bilya bn Zvidsi mayemo sho dlya togo shob znajti bud yakij ne nulovij abo n 1 koeficiyent neobhidno prosumuvati elementi yaki znahodyatsya u ryadku vishe zliva ta sprava Ce osnovne pravilo pobudovi trikutnika Paskalya Cikavim ye te sho yaksho mi vizmemo a ta b rivnimi odinici to 1 1 n 2n Zvidsi mayemo n 0 n 1 n n 1 n n 2 n displaystyle n choose 0 n choose 1 cdots n choose n 1 n choose n 2 n nbsp Inshimi slovami suma elementiv v n mu ryadku trikutnika Paskalya dorivnyuye 2 n displaystyle 2 n nbsp Div takozh RedaguvatiCentralnij binomialnij koeficiyentPrimitki Redaguvati Brothers H J 2012 Finding e in Pascal s triangle Mathematics Magazine 85 51 doi 10 4169 math mag 85 1 51 Brothers H J 2012 Pascal s triangle The hidden stor e The Mathematical Gazette 96 145 148 Fine N J 1947 Binomial coefficients modulo a prime American Mathematical Monthly 54 589 592 MR 0023257 doi 10 2307 2304500 Divis zokremu Teoremu 2 yaka daye uzagalnennya dlya vsih prostih moduliv Hinz Andreas M 1992 Pascal s triangle and the Tower of Hanoi The American Mathematical Monthly 99 6 538 544 MR 1166003 doi 10 2307 2324061 Hinz pripisuye ce sposterezhennya knizi 1891 roku Fransua Eduard Anatol Lyuka Theorie des nombres p 420 Wolfram S 1984 Computation Theory of Cellular Automata Comm Math Phys 96 15 57 Bibcode 1984CMaPh 96 15W doi 10 1007 BF01217347 Posilannya Redaguvati Weisstein Eric W Trikutnik Paskalya angl na sajti Wolfram MathWorld Otrimano z https uk wikipedia org w index php title Trikutnik Paskalya amp oldid 39281522