www.wikidata.uk-ua.nina.az
Teorema Lagranzha pro chotiri kvadrati stverdzhuye sho dovilne naturalne chislo mozhna podati u vidi sumi chotiroh kvadrativ cilih chisel Tobto dlya dovilnogo naturalnogo chisla n isnuyut cili chisla a b c d taki sho n a 2 b 2 c 2 d 2 displaystyle n a 2 b 2 c 2 d 2 Napriklad 1 1 2 0 2 0 2 0 2 2 1 2 1 2 0 2 0 2 3 1 2 1 2 1 2 0 2 31 5 2 2 2 1 2 1 2 310 17 2 4 2 2 2 1 2 displaystyle begin aligned 1 amp 1 2 0 2 0 2 0 2 2 amp 1 2 1 2 0 2 0 2 3 amp 1 2 1 2 1 2 0 2 31 amp 5 2 2 2 1 2 1 2 310 amp 17 2 4 2 2 2 1 2 end aligned Teorema dovedena Lagranzhem v 1770 roci Dovilne naturalne chislo sho ne zapisuyetsya u vidi 4 k 8 m 7 displaystyle 4 k 8m 7 mozhna takozh zapisati yak sumu kvadrativ troh chisel Dovedennya RedaguvatiDlya najmenshih naturalnih chisel 1 i 2 rozklad zapisano vishe Takozh dlya vsih chisel vikonuyetsya totozhnist chotiroh kvadrativ a 1 2 a 2 2 a 3 2 a 4 2 b 1 2 b 2 2 b 3 2 b 4 2 displaystyle a 1 2 a 2 2 a 3 2 a 4 2 b 1 2 b 2 2 b 3 2 b 4 2 nbsp a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 2 displaystyle a 1 b 1 a 2 b 2 a 3 b 3 a 4 b 4 2 nbsp a 1 b 2 a 2 b 1 a 3 b 4 a 4 b 3 2 displaystyle a 1 b 2 a 2 b 1 a 3 b 4 a 4 b 3 2 nbsp a 1 b 3 a 2 b 4 a 3 b 1 a 4 b 2 2 displaystyle a 1 b 3 a 2 b 4 a 3 b 1 a 4 b 2 2 nbsp a 1 b 4 a 2 b 3 a 3 b 2 a 4 b 1 2 displaystyle a 1 b 4 a 2 b 3 a 3 b 2 a 4 b 1 2 nbsp Zvidsi viplivaye sho yaksho dva dovilni naturalni chisla mozhna podati u vidi sumi chotiroh kvadrativ to ce zh mozhna zrobiti i dlya yih dobutku Vidpovidno tverdzhennya teoremi dostatno dovesti dlya neparnih prostih chisel Spershu dlya takogo prostogo chisla p displaystyle p nbsp isnuye naturalne chislo 0 lt m lt p displaystyle 0 lt m lt p nbsp dlya yakogo m p 1 a 2 b 2 displaystyle mp 1 a 2 b 2 nbsp dlya deyakih cilih a b displaystyle a b nbsp Ce viplivaye z togo sho cili chisla a 2 displaystyle a 2 nbsp dlya 0 a p 1 2 displaystyle 0 leqslant a leqslant frac p 1 2 nbsp ne ye rivnimi za modulem p displaystyle p nbsp Spravdi yaksho dlya dvoh takih riznih chisel a 1 2 a 2 2 mod p displaystyle a 1 2 equiv a 2 2 mod p nbsp to a 1 a 2 a 1 a 2 0 mod p displaystyle a 1 a 2 a 1 a 2 equiv 0 mod p nbsp i abo riznicya a 1 a 2 displaystyle a 1 a 2 nbsp abo suma a 1 a 2 displaystyle a 1 a 2 nbsp dilitsya na p displaystyle p nbsp sho ne ye mozhlivim Analogichno chisla b 2 1 displaystyle b 2 1 nbsp dlya 0 b p 1 2 displaystyle 0 leqslant b leqslant frac p 1 2 nbsp ne ye rivnimi za modulem p displaystyle p nbsp Zagalom ye p 1 displaystyle p 1 nbsp chislo vidu a 2 displaystyle a 2 nbsp abo b 2 1 displaystyle b 2 1 nbsp iz vkazanimi umovami i vidpovidno hocha b dva iz nih nalezhat odnomu klasu lishkiv za modulem p displaystyle p nbsp Ce mayut buti deyaki chisla a 2 displaystyle a 2 nbsp i b 2 1 displaystyle b 2 1 nbsp tobto a 2 b 2 1 mod p displaystyle a 2 equiv b 2 1 mod p nbsp i vidpovidno isnuye cile chislo m displaystyle m nbsp dlya yakogo a 2 b 2 1 m p displaystyle a 2 b 2 1 mp nbsp Oskilki a 2 b 2 lt p 2 2 displaystyle a 2 b 2 lt left p over 2 right 2 nbsp to a 2 b 2 1 lt 1 2 p 2 2 lt p 2 displaystyle a 2 b 2 1 lt 1 2 left p over 2 right 2 lt p 2 nbsp i zvidsi takozh 0 lt m lt p displaystyle 0 lt m lt p nbsp Zokrema takozh chislo m p displaystyle mp nbsp ye sumoyu chotiroh kvadrativ m p 0 1 a 2 b 2 displaystyle mp 0 1 a 2 b 2 nbsp i odin iz dodankiv ne dilitsya na p displaystyle p nbsp Nehaj teper m displaystyle m nbsp ye minimalnim naturalnim chislom dlya yakogo isnuye rozklad u sumu chotiroh kvadrativ m p x 1 2 x 2 2 x 3 2 x 4 2 displaystyle mp x 1 2 x 2 2 x 3 2 x 4 2 nbsp de hocha b odne iz cilih chisel x i displaystyle x i nbsp ne dilitsya na p displaystyle p nbsp Dlya dovedennya teoremi Lagranzha dostatno dovesti sho m 1 displaystyle m 1 nbsp Chislo m displaystyle m nbsp ye neparnim Adzhe yaksho m displaystyle m nbsp ye parnim to parnim ye i x 1 2 x 2 2 x 3 2 x 4 2 displaystyle x 1 2 x 2 2 x 3 2 x 4 2 nbsp Ale todi abo vsi x i displaystyle x i nbsp ye parnimi abo vsi neparnimi abo dva parnimi i dva neparnimi V bud yakomu vipadku za dopomogoyu perepoznachen mozhna vvazhati sho x 1 displaystyle x 1 nbsp i x 2 displaystyle x 2 nbsp mayut odnakovu parnist a takozh x 3 displaystyle x 3 nbsp i x 4 displaystyle x 4 nbsp mayut odnakovu parnist Todi m p 2 x 1 x 2 2 2 x 1 x 2 2 2 x 3 x 4 2 2 x 3 x 4 2 2 displaystyle frac mp 2 left frac x 1 x 2 2 right 2 left frac x 1 x 2 2 right 2 left frac x 3 x 4 2 right 2 left frac x 3 x 4 2 right 2 nbsp Tobto m p 2 displaystyle frac mp 2 nbsp ye sumoyu chotiroh kvadrativ ne vsi z yakih dilyatsya na p displaystyle p nbsp i ce superechit minimalnosti chisla m displaystyle m nbsp Yaksho m 3 displaystyle m geqslant 3 nbsp ye neparnim chislom to isnuyut chisla y i displaystyle y i nbsp yaki ye rivnimi x i displaystyle x i nbsp za modulem m displaystyle m nbsp i y i lt m 2 displaystyle y i lt frac m 2 nbsp Takozh ne vsi x i displaystyle x i nbsp dilyatsya na m displaystyle m nbsp v inshomu vipadku suma yih kvadrativ yaka ye rivnoyu m p displaystyle mp nbsp dililasya b na m 2 displaystyle m 2 nbsp sho ne ye mozhlivim dlya 0 lt m lt p displaystyle 0 lt m lt p nbsp i tomu hocha b odne iz chisel y i displaystyle y i nbsp ne ye rivnim 0 Vidpovidno zgidno oznachen 0 lt y 1 2 y 2 2 y 3 2 y 4 2 lt 4 m 2 2 m 2 displaystyle 0 lt y 1 2 y 2 2 y 3 2 y 4 2 lt 4 left frac m 2 right 2 m 2 nbsp Vodnochas y 1 2 y 2 2 y 3 2 y 4 2 0 mod m displaystyle y 1 2 y 2 2 y 3 2 y 4 2 equiv 0 mod m nbsp i isnuye cile chislo m 2 lt m displaystyle m 2 lt m nbsp dlya yakogo y 1 2 y 2 2 y 3 2 y 4 2 m 2 m displaystyle y 1 2 y 2 2 y 3 2 y 4 2 m 2 m nbsp Zgidno totozhnosti chotiroh kvadrativ dobutok x 1 2 x 2 2 x 3 2 x 4 2 displaystyle x 1 2 x 2 2 x 3 2 x 4 2 nbsp i y 1 2 y 2 2 y 3 2 y 4 2 displaystyle y 1 2 y 2 2 y 3 2 y 4 2 nbsp ye rivnij sumi kvadrativ deyakih chotiroh cilih chisel i takozh z 1 2 z 2 2 z 3 2 z 4 2 m 2 m 2 p displaystyle z 1 2 z 2 2 z 3 2 z 4 2 m 2 m 2 p nbsp Rozglyadayuchi oznachennya usih z i displaystyle z i nbsp u totozhnosti chotiroh kvadrativ i vrahovuyuchi sho x i displaystyle x i nbsp i y i displaystyle y i nbsp ye rivnimi za modulem m displaystyle m nbsp oderzhuyetsya sho vsi z i displaystyle z i nbsp dilyatsya na m displaystyle m nbsp tobto z i m t i displaystyle z i mt i nbsp Dilyachi rivnist z 1 2 z 2 2 z 3 2 z 4 2 m 2 m 2 p displaystyle z 1 2 z 2 2 z 3 2 z 4 2 m 2 m 2 p nbsp na m 2 displaystyle m 2 nbsp oderzhuyemo sho t 1 2 t 2 2 t 3 2 t 4 2 m 2 p displaystyle t 1 2 t 2 2 t 3 2 t 4 2 m 2 p nbsp i m 2 p displaystyle m 2 p nbsp ye rivnim sumi chotiroh kvadrativ sho superechit minimalnosti m displaystyle m nbsp Div takozh RedaguvatiSpisok ob yektiv nazvanih na chest Zhozefa Luyi Lagranzha Teorema Lezhandra pro tri kvadrati Totozhnist chotiroh kvadrativDzherela RedaguvatiChandrasekharan K Vvedenie v analiticheskuyu teoriyu chisel Moskva Mir 1974 187 s ros Andrews George E 1971 Number Theory Philadelphia W B Saunders Company Otrimano z https uk wikipedia org w index php title Teorema Lagranzha pro chotiri kvadrati amp oldid 37755599