www.wikidata.uk-ua.nina.az
Priyednani funkciyi Lezhandra kanonichni rozv yazki uzagalnenogo rivnyannya Lezhandra 1 x 2 d 2 d x 2 P ℓ m x 2 x d d x P ℓ m x ℓ ℓ 1 m 2 1 x 2 P ℓ m x 0 displaystyle 1 x 2 frac d 2 dx 2 P ell m x 2x frac d dx P ell m x left ell ell 1 frac m 2 1 x 2 right P ell m x 0 abo d d x 1 x 2 d d x P ℓ m x ℓ ℓ 1 m 2 1 x 2 P ℓ m x 0 displaystyle frac d dx left 1 x 2 frac d dx P ell m x right left ell ell 1 frac m 2 1 x 2 right P ell m x 0 de indeksi ℓ ta m nazivayut stepinnyu ta poryadkom vidpovidno U razi koli ℓ cile a m ne tilki cile a parne ci funkciyi zvodyatsya do polinomiv Lezhandra tomi yih chasto neformalno nazivayut priyednanimi polinomami Lezhandra hocha dlya dovilnih ℓ ta m voni polinomami ne ye Zagalom uzagalnene rivnyannya Lezhandra maye analitichnij rozv yazok na intrevali on 1 1 lishe dlya cilih ℓ ta m Rivnyannya Lezhandra chasto zustrichayetsya fizici ta sumizhnih disciplinah Zokrema voni vinikayut pri rozv yazanni rivnyannya Laplasa v sferichnij sistemi koordinat Voni vazhlivi dlya viznachennya sferichnih garmonik Zmist 1 Oznachennya dlya nevid yemnih cilih znachen ℓ ta m 1 1 Alternativne poznachennya 2 Ortogonalnist 3 Vid yemni m ta abo vid yemni ℓ 4 Parnist 5 Pershi kilka priyednanih funkcij Lezhandra 6 Rekurentni spivvidnoshennya 7 Formula Gonta 8 Uzagalnennya cherez gipergeometrichnu funkciyu 9 Parametrizaciya cherez kuti 10 Zastosuvannya v fizici sferichni garmoniki 11 Uzagalnennya 12 Div takozh 13 Literatura 14 Posilannya 15 VinoskiOznachennya dlya nevid yemnih cilih znachen ℓ ta m RedaguvatiRozv yazki ponachayutsya P ℓ m x displaystyle P ell m x nbsp de m verhnij indeks Nalegshe yih viznachiti yak pohidni vid polinomiv Lezhandra m 0 P ℓ m x 1 m 1 x 2 m 2 d m d x m P ℓ x displaystyle P ell m x 1 m 1 x 2 m 2 frac d m dx m left P ell x right nbsp Inodi mnozhnik 1 m u viznachenni opuskayut Viznacheni tak funkciyi zadovolnyayut uzagalnene rivnyannya Lezhandra uchomu mozhna perekonatisya vzyavshi m pohidnu vid rivnyannya Lezhandra dlya polinomiv Pℓ 1 1 x 2 d 2 d x 2 P ℓ x 2 x d d x P ℓ x ℓ ℓ 1 P ℓ x 0 displaystyle 1 x 2 frac d 2 dx 2 P ell x 2x frac d dx P ell x ell ell 1 P ell x 0 nbsp Vrahovuyuchi formulu Rodriga P ℓ x 1 2 ℓ ℓ d ℓ d x ℓ x 2 1 ℓ displaystyle P ell x frac 1 2 ell ell frac d ell dx ell left x 2 1 ell right nbsp Pmℓ mozhna zapisati u viglyadi P ℓ m x 1 m 2 ℓ ℓ 1 x 2 m 2 d ℓ m d x ℓ m x 2 1 ℓ displaystyle P ell m x frac 1 m 2 ell ell 1 x 2 m 2 frac d ell m dx ell m x 2 1 ell nbsp Ce rivnyannya dozvolyaye rozshiriti diapozon znachen m do ℓ m ℓ Oznachennya Pℓ m sho sliduye z cogo virazu pislya zamini m proprcionalni mizh soboyu Spravdi pririvnyayuyuchi koeficiyenti pri odnakovih stepenyah u pravij ta livij chastini formuli d ℓ m d x ℓ m x 2 1 ℓ c l m 1 x 2 m d ℓ m d x ℓ m x 2 1 ℓ displaystyle frac d ell m dx ell m x 2 1 ell c lm 1 x 2 m frac d ell m dx ell m x 2 1 ell nbsp stala proporcijnosi viznachayetsya yak c l m 1 m ℓ m ℓ m displaystyle c lm 1 m frac ell m ell m nbsp tozh P ℓ m x 1 m ℓ m ℓ m P ℓ m x displaystyle P ell m x 1 m frac ell m ell m P ell m x nbsp Alternativne poznachennya Redaguvati U literaturi takozh vikoristovuyetsya poznachennya 2 P ℓ m x 1 m P ℓ m x displaystyle P ell m x 1 m P ell m x nbsp Ortogonalnist RedaguvatiU mezhah 0 m ℓ fukciyi zadovolnyayut umovu ortogonalnosti dlya fiksovanih m 1 1 P k m P ℓ m d x 2 ℓ m 2 ℓ 1 ℓ m d k ℓ displaystyle int 1 1 P k m P ell m dx frac 2 ell m 2 ell 1 ell m delta k ell nbsp de dk ℓ simvol Kronekera Voni takozh zadovolnyayut umovu ortogonalnosti pri fiksovanih ℓ 1 1 P ℓ m P ℓ n 1 x 2 d x 0 if m n ℓ m m ℓ m if m n 0 if m n 0 displaystyle int 1 1 frac P ell m P ell n 1 x 2 dx begin cases 0 amp mbox if m neq n frac ell m m ell m amp mbox if m n neq 0 infty amp mbox if m n 0 end cases nbsp Vid yemni m ta abo vid yemni ℓ RedaguvatiDiferencijne rivnyannya invariantne shodo zmini znaku m Funkciyi pri vid yemnmh m proporcijni viznachenim pri dodatnih m P ℓ m 1 m ℓ m ℓ m P ℓ m displaystyle P ell m 1 m frac ell m ell m P ell m nbsp Yaksho m gt ℓ displaystyle mid m mid gt ell nbsp to P ℓ m 0 displaystyle P ell m 0 nbsp Diferencijne rivnyannya ne zmiyuyetsya takozh pri zamini ℓ na ℓ 1 tomu funkciyi pri vid yemnih ℓ viznachayutsya yak P ℓ m P ℓ 1 m ℓ 1 2 displaystyle P ell m P ell 1 m ell 1 2 nbsp Parnist RedaguvatiZ oznachennya viplivaye sho priyednani funkciyi Lezhandra abo parni abo neparni P ℓ m x 1 ℓ m P ℓ m x displaystyle P ell m x 1 ell m P ell m x nbsp Pershi kilka priyednanih funkcij Lezhandra Redaguvati nbsp Associated Legendre functions for m 4Pershi kilka priyednanih funkcij Lezhandra vklyuchno z vid yemnimi znachennyami m P 0 0 x 1 displaystyle P 0 0 x 1 nbsp P 1 1 x 1 2 P 1 1 x displaystyle P 1 1 x begin matrix frac 1 2 end matrix P 1 1 x nbsp P 1 0 x x displaystyle P 1 0 x x nbsp P 1 1 x 1 x 2 1 2 displaystyle P 1 1 x 1 x 2 1 2 nbsp P 2 2 x 1 24 P 2 2 x displaystyle P 2 2 x begin matrix frac 1 24 end matrix P 2 2 x nbsp P 2 1 x 1 6 P 2 1 x displaystyle P 2 1 x begin matrix frac 1 6 end matrix P 2 1 x nbsp P 2 0 x 1 2 3 x 2 1 displaystyle P 2 0 x begin matrix frac 1 2 end matrix 3x 2 1 nbsp P 2 1 x 3 x 1 x 2 1 2 displaystyle P 2 1 x 3x 1 x 2 1 2 nbsp P 2 2 x 3 1 x 2 displaystyle P 2 2 x 3 1 x 2 nbsp P 3 3 x 1 720 P 3 3 x displaystyle P 3 3 x begin matrix frac 1 720 end matrix P 3 3 x nbsp P 3 2 x 1 120 P 3 2 x displaystyle P 3 2 x begin matrix frac 1 120 end matrix P 3 2 x nbsp P 3 1 x 1 12 P 3 1 x displaystyle P 3 1 x begin matrix frac 1 12 end matrix P 3 1 x nbsp P 3 0 x 1 2 5 x 3 3 x displaystyle P 3 0 x begin matrix frac 1 2 end matrix 5x 3 3x nbsp P 3 1 x 3 2 5 x 2 1 1 x 2 1 2 displaystyle P 3 1 x begin matrix frac 3 2 end matrix 5x 2 1 1 x 2 1 2 nbsp P 3 2 x 15 x 1 x 2 displaystyle P 3 2 x 15x 1 x 2 nbsp P 3 3 x 15 1 x 2 3 2 displaystyle P 3 3 x 15 1 x 2 3 2 nbsp P 4 4 x 1 40320 P 4 4 x displaystyle P 4 4 x begin matrix frac 1 40320 end matrix P 4 4 x nbsp P 4 3 x 1 5040 P 4 3 x displaystyle P 4 3 x begin matrix frac 1 5040 end matrix P 4 3 x nbsp P 4 2 x 1 360 P 4 2 x displaystyle P 4 2 x begin matrix frac 1 360 end matrix P 4 2 x nbsp P 4 1 x 1 20 P 4 1 x displaystyle P 4 1 x begin matrix frac 1 20 end matrix P 4 1 x nbsp P 4 0 x 1 8 35 x 4 30 x 2 3 displaystyle P 4 0 x begin matrix frac 1 8 end matrix 35x 4 30x 2 3 nbsp P 4 1 x 5 2 7 x 3 3 x 1 x 2 1 2 displaystyle P 4 1 x begin matrix frac 5 2 end matrix 7x 3 3x 1 x 2 1 2 nbsp P 4 2 x 15 2 7 x 2 1 1 x 2 displaystyle P 4 2 x begin matrix frac 15 2 end matrix 7x 2 1 1 x 2 nbsp P 4 3 x 105 x 1 x 2 3 2 displaystyle P 4 3 x 105x 1 x 2 3 2 nbsp P 4 4 x 105 1 x 2 2 displaystyle P 4 4 x 105 1 x 2 2 nbsp P 5 5 x 1 3840 1 x 2 5 displaystyle P 5 5 x 1 over 3840 left sqrt 1 x 2 right 5 nbsp P 5 4 x 1 384 1 x 2 4 x displaystyle P 5 4 x 1 over 384 left sqrt 1 x 2 right 4 x nbsp P 5 3 x 1 384 1 x 2 3 9 x 2 1 displaystyle P 5 3 x 1 over 384 left sqrt 1 x 2 right 3 9x 2 1 nbsp P 5 2 x 1 16 1 x 2 2 3 x 3 1 x displaystyle P 5 2 x 1 over 16 left sqrt 1 x 2 right 2 3x 3 1x nbsp P 5 1 x 1 16 1 x 2 21 x 4 14 x 2 1 displaystyle P 5 1 x 1 over 16 left sqrt 1 x 2 right 21x 4 14x 2 1 nbsp P 5 0 x 1 8 63 x 5 70 x 3 15 x displaystyle P 5 0 x 1 over 8 63x 5 70x 3 15x nbsp P 5 1 x 15 8 1 x 2 21 x 4 14 x 2 1 displaystyle P 5 1 x 15 over 8 left sqrt 1 x 2 right 21x 4 14x 2 1 nbsp P 5 2 x 105 2 1 x 2 2 3 x 3 1 x displaystyle P 5 2 x 105 over 2 left sqrt 1 x 2 right 2 3x 3 1x nbsp P 5 3 x 105 2 1 x 2 3 9 x 2 1 displaystyle P 5 3 x 105 over 2 left sqrt 1 x 2 right 3 9x 2 1 nbsp P 5 4 x 945 1 x 2 4 x displaystyle P 5 4 x 945 left sqrt 1 x 2 right 4 x nbsp P 5 5 x 945 1 x 2 5 displaystyle P 5 5 x 945 left sqrt 1 x 2 right 5 nbsp Rekurentni spivvidnoshennya RedaguvatiFunkciyi Lezhandra zadovolnyayut rekurentnim spivvidnoshennyam ℓ m 1 P ℓ 1 m x 2 ℓ 1 x P ℓ m x ℓ m P ℓ 1 m x displaystyle ell m 1 P ell 1 m x 2 ell 1 xP ell m x ell m P ell 1 m x nbsp 2 m x P ℓ m x 1 x 2 P ℓ m 1 x ℓ m ℓ m 1 P ℓ m 1 x displaystyle 2mxP ell m x sqrt 1 x 2 left P ell m 1 x ell m ell m 1 P ell m 1 x right nbsp 1 1 x 2 P ℓ m x 1 2 m P ℓ 1 m 1 x ℓ m 1 ℓ m P ℓ 1 m 1 x displaystyle frac 1 sqrt 1 x 2 P ell m x frac 1 2m left P ell 1 m 1 x ell m 1 ell m P ell 1 m 1 x right nbsp 1 1 x 2 P ℓ m x 1 2 m P ℓ 1 m 1 x ℓ m 1 ℓ m 2 P ℓ 1 m 1 x displaystyle frac 1 sqrt 1 x 2 P ell m x frac 1 2m left P ell 1 m 1 x ell m 1 ell m 2 P ell 1 m 1 x right nbsp 1 x 2 P ℓ m x 1 2 ℓ 1 ℓ m 1 ℓ m 2 P ℓ 1 m 1 x ℓ m 1 ℓ m P ℓ 1 m 1 x displaystyle sqrt 1 x 2 P ell m x frac 1 2 ell 1 left ell m 1 ell m 2 P ell 1 m 1 x ell m 1 ell m P ell 1 m 1 x right nbsp 1 x 2 P ℓ m x 1 2 ℓ 1 P ℓ 1 m 1 x P ℓ 1 m 1 x displaystyle sqrt 1 x 2 P ell m x frac 1 2 ell 1 left P ell 1 m 1 x P ell 1 m 1 x right nbsp 1 x 2 P ℓ m 1 x ℓ m x P ℓ m x ℓ m P ℓ 1 m x displaystyle sqrt 1 x 2 P ell m 1 x ell m xP ell m x ell m P ell 1 m x nbsp 1 x 2 P ℓ m 1 x ℓ m 1 P ℓ 1 m x ℓ m 1 x P ℓ m x displaystyle sqrt 1 x 2 P ell m 1 x ell m 1 P ell 1 m x ell m 1 xP ell m x nbsp 1 x 2 d d x P ℓ m x 1 2 ℓ m ℓ m 1 P ℓ m 1 x P ℓ m 1 x displaystyle sqrt 1 x 2 frac d dx P ell m x frac 1 2 left ell m ell m 1 P ell m 1 x P ell m 1 x right nbsp 1 x 2 d d x P ℓ m x 1 2 ℓ 1 ℓ 1 ℓ m P ℓ 1 m x ℓ ℓ m 1 P ℓ 1 m x displaystyle 1 x 2 frac d dx P ell m x frac 1 2 ell 1 left ell 1 ell m P ell 1 m x ell ell m 1 P ell 1 m x right nbsp x 2 1 d d x P ℓ m x ℓ x P ℓ m x ℓ m P ℓ 1 m x displaystyle x 2 1 frac d dx P ell m x ell xP ell m x ell m P ell 1 m x nbsp x 2 1 d d x P ℓ m x ℓ 1 x P ℓ m x ℓ m 1 P ℓ 1 m x displaystyle x 2 1 frac d dx P ell m x ell 1 xP ell m x ell m 1 P ell 1 m x nbsp x 2 1 d d x P ℓ m x 1 x 2 P ℓ m 1 x m x P ℓ m x displaystyle x 2 1 frac d dx P ell m x sqrt 1 x 2 P ell m 1 x mxP ell m x nbsp x 2 1 d d x P ℓ m x ℓ m ℓ m 1 1 x 2 P ℓ m 1 x m x P ℓ m x displaystyle x 2 1 frac d dx P ell m x ell m ell m 1 sqrt 1 x 2 P ell m 1 x mxP ell m x nbsp Korisni totozhnosti pochatkovi znachennya dlya rekursiyi P ℓ 1 ℓ 1 x 2 ℓ 1 1 x 2 P ℓ ℓ x displaystyle P ell 1 ell 1 x 2 ell 1 sqrt 1 x 2 P ell ell x nbsp P ℓ ℓ x 1 ℓ 2 ℓ 1 1 x 2 ℓ 2 displaystyle P ell ell x 1 ell 2 ell 1 1 x 2 ell 2 nbsp P ℓ 1 ℓ x x 2 ℓ 1 P ℓ ℓ x displaystyle P ell 1 ell x x 2 ell 1 P ell ell x nbsp de poznachaye podvijnij faktorial Formula Gonta RedaguvatiIntegral vid dobutku troh priyednanih polinomiv Lezhandra z poryadkami vkazanimi nizhche maye znachennya dlya rozkladu dobutku polinomiv Lezhandra v linijni ryadi polinomiv Napriklad u comu vinikaye potreba pri atomnih rozrahunkah yaki vikoristovuyut matrichni elementi vid kulonivskogo operatora v metodi Gartri Foka Cij meti vidpovidaye formula Gonta 3 1 2 1 1 P l u x P m v x P n w x d x displaystyle frac 1 2 int 1 1 P l u x P m v x P n w x dx nbsp 1 s m w m v n w 2 s 2 n s m v s l s m s n 2 s 1 displaystyle 1 s m w frac m v n w 2s 2n s m v s l s m s n 2s 1 nbsp t p q 1 t l u t m n u t t l u t m n u t n w t displaystyle times sum t p q 1 t frac l u t m n u t t l u t m n u t n w t nbsp Cya formula vikoristovuyetsya za umovi vikonannya nastupnih pripushen stepeni nevid yemni cili chisla l m n 0 displaystyle l m n geq 0 nbsp u v w 0 displaystyle u v w geq 0 nbsp nevid yemni cili u displaystyle u nbsp najbilshij zi stepeniv u sumi stepeni dayut u v w displaystyle u v w nbsp poryadki zadovolnyayut umovi m n displaystyle m geq n nbsp Inshi velichini u formuli oznacheni tak 2 s l m n displaystyle 2s l m n nbsp p max 0 n m u displaystyle p max 0 n m u nbsp q min m n u l u n w displaystyle q min m n u l u n w nbsp Integral dorivnyuye nulyu yaksho ne vikonuyetsya nastupne suma vsih stepeniv parna tozh s displaystyle s nbsp ye cilim chislom zadovolnyayetsya umova trikutnika m n l m n displaystyle m n geq l geq m n nbsp Dong ta Lemyu 2002 4 uzagalnili dovedennya ciyeyi formuli na integrali vid dobutku dovilnogo chisla priyednanih polinomiv Lezhandra Uzagalnennya cherez gipergeometrichnu funkciyu RedaguvatiDokladnishe Funkciyi LezhandraFunkciyi mozhna viznachiti dlya dovilnih kompleksnih parametriv ta argumentiv P l m z 1 G 1 m 1 z 1 z m 2 2 F 1 l l 1 1 m 1 z 2 displaystyle P lambda mu z frac 1 Gamma 1 mu left frac 1 z 1 z right mu 2 2 F 1 lambda lambda 1 1 mu frac 1 z 2 nbsp de G displaystyle Gamma nbsp gamma funkciya a 2 F 1 displaystyle 2 F 1 nbsp gipergeometrichna funkciya 2 F 1 a b g z G g G a G b n 0 G n a G n b G n g n z n displaystyle 2 F 1 alpha beta gamma z frac Gamma gamma Gamma alpha Gamma beta sum n 0 infty frac Gamma n alpha Gamma n beta Gamma n gamma n z n nbsp Za takogo zagalnogo oznachennya funkciyi odnoznachno nazivayut funkciyami Lezhandra Voni zadovolnyayut tomu zh diferencijnomu rivnyannyu 1 z 2 y 2 z y l l 1 m 2 1 z 2 y 0 displaystyle 1 z 2 y 2zy left lambda lambda 1 frac mu 2 1 z 2 right y 0 nbsp Oskilki ce rivnyannya drugogo poryadku vono maye she odin rozv yazok Q l m z displaystyle Q lambda mu z nbsp viznachenij yak Q l m z p G l m 1 2 l 1 G l 3 2 1 z l m 1 1 z 2 m 2 2 F 1 l m 1 2 l m 2 2 l 3 2 1 z 2 displaystyle Q lambda mu z frac sqrt pi Gamma lambda mu 1 2 lambda 1 Gamma lambda 3 2 frac 1 z lambda mu 1 1 z 2 mu 2 2 F 1 left frac lambda mu 1 2 frac lambda mu 2 2 lambda frac 3 2 frac 1 z 2 right nbsp Yak P l m z displaystyle P lambda mu z nbsp tak i Q l m z displaystyle Q lambda mu z nbsp zadovolnyayut rekurentnim formulam navedenim ranishe Parametrizaciya cherez kuti RedaguvatiPriyednani funkciyi Lezhandra najbilshe vikoristovuyutsya koli yihnim arumentom ye kut Pislya zamini x cos 8 displaystyle x cos theta nbsp P ℓ m cos 8 1 m sin 8 m d m d cos 8 m P ℓ cos 8 displaystyle P ell m cos theta 1 m sin theta m frac d m d cos theta m left P ell cos theta right nbsp Vikoristovuyuchi 1 x 2 1 2 sin 8 displaystyle 1 x 2 1 2 sin theta nbsp navedenij vishe perelik nabiraye formi P 0 0 cos 8 1 P 1 0 cos 8 cos 8 P 1 1 cos 8 sin 8 P 2 0 cos 8 1 2 3 cos 2 8 1 P 2 1 cos 8 3 cos 8 sin 8 P 2 2 cos 8 3 sin 2 8 P 3 0 cos 8 1 2 5 cos 3 8 3 cos 8 P 3 1 cos 8 3 2 5 cos 2 8 1 sin 8 P 3 2 cos 8 15 cos 8 sin 2 8 P 3 3 cos 8 15 sin 3 8 P 4 0 cos 8 1 8 35 cos 4 8 30 cos 2 8 3 P 4 1 cos 8 5 2 7 cos 3 8 3 cos 8 sin 8 P 4 2 cos 8 15 2 7 cos 2 8 1 sin 2 8 P 4 3 cos 8 105 cos 8 sin 3 8 P 4 4 cos 8 105 sin 4 8 displaystyle begin aligned P 0 0 cos theta amp 1 8pt P 1 0 cos theta amp cos theta 8pt P 1 1 cos theta amp sin theta 8pt P 2 0 cos theta amp tfrac 1 2 3 cos 2 theta 1 8pt P 2 1 cos theta amp 3 cos theta sin theta 8pt P 2 2 cos theta amp 3 sin 2 theta 8pt P 3 0 cos theta amp tfrac 1 2 5 cos 3 theta 3 cos theta 8pt P 3 1 cos theta amp tfrac 3 2 5 cos 2 theta 1 sin theta 8pt P 3 2 cos theta amp 15 cos theta sin 2 theta 8pt P 3 3 cos theta amp 15 sin 3 theta 8pt P 4 0 cos theta amp tfrac 1 8 35 cos 4 theta 30 cos 2 theta 3 8pt P 4 1 cos theta amp tfrac 5 2 7 cos 3 theta 3 cos theta sin theta 8pt P 4 2 cos theta amp tfrac 15 2 7 cos 2 theta 1 sin 2 theta 8pt P 4 3 cos theta amp 105 cos theta sin 3 theta 8pt P 4 4 cos theta amp 105 sin 4 theta end aligned nbsp Ortogonalnist u cih poznachennyah staye dlya fiksovanih m P ℓ m cos 8 displaystyle P ell m cos theta nbsp ortogonalini v intervali zmini 8 0 p displaystyle 0 pi nbsp z vagoyu sin 8 displaystyle sin theta nbsp 0 p P k m cos 8 P ℓ m cos 8 sin 8 d 8 2 ℓ m 2 ℓ 1 ℓ m d k ℓ displaystyle int 0 pi P k m cos theta P ell m cos theta sin theta d theta frac 2 ell m 2 ell 1 ell m delta k ell nbsp Dlya fiksovanih ℓ 0 p P ℓ m cos 8 P ℓ n cos 8 csc 8 d 8 0 if m n ℓ m m ℓ m if m n 0 if m n 0 displaystyle int 0 pi P ell m cos theta P ell n cos theta csc theta d theta begin cases 0 amp text if m neq n frac ell m m ell m amp text if m n neq 0 infty amp text if m n 0 end cases nbsp Yak funkciyi vid 8 P ℓ m cos 8 displaystyle P ell m cos theta nbsp ye rozv yazkami rivnyannya d 2 y d 8 2 cot 8 d y d 8 l m 2 sin 2 8 y 0 displaystyle frac d 2 y d theta 2 cot theta frac dy d theta left lambda frac m 2 sin 2 theta right y 0 nbsp Tochnishe dlya cilogo m displaystyle geq nbsp 0 navedene rivnyannya maye rozv yazki bez osoblivostej tilki todi koli l ℓ ℓ 1 displaystyle lambda ell ell 1 nbsp dlya cilih ℓ m i ci rozv yazki proporcijni P ℓ m cos 8 displaystyle P ell m cos theta nbsp Zastosuvannya v fizici sferichni garmoniki RedaguvatiDokladnishe Sferichni garmonikiU fizici priyednani polinomi Lezhandra yak funkciyi kuta zustrichayutsya v zadachah zi sferichnoyu simetriyeyu Krim polyarnogo kuta 8 displaystyle theta nbsp v cih zadachah figuruye kut f displaystyle varphi nbsp Funkciyi cih dvoh kutiv utvoryuyut tak zvani sferichni garmoniki Voni vidobrazhayut simetriyu dvo sferi pid diyeyu grupi Li SO 3 Korisnist cih funkcij u tomu sho voni ye rozv yazkami rivnyannya 2 ps l ps 0 displaystyle nabla 2 psi lambda psi 0 nbsp na poverhni sferi U sferichnih koordinatah 8 ta f Laplasian maye viglyad 2 ps 2 ps 8 2 ctg 8 ps 8 cosec 2 8 2 ps f 2 displaystyle nabla 2 psi frac partial 2 psi partial theta 2 text ctg theta frac partial psi partial theta text cosec 2 theta frac partial 2 psi partial varphi 2 nbsp Yaksho rozv yazati rivnyannya v chastkovih pohidnih 2 ps 8 2 ctg 8 ps 8 cosec 2 8 2 ps f 2 l ps 0 displaystyle frac partial 2 psi partial theta 2 text ctg theta frac partial psi partial theta text cosec 2 theta frac partial 2 psi partial varphi 2 lambda psi 0 nbsp metodom rozdilennya zminnih zalezhna vid f chastina maye viglyad sin m f displaystyle sin m varphi nbsp abo cos m f displaystyle cos m varphi nbsp dlya cilih m 0 a rivnyannya dlya zalezhnoyi vid 8 chastini nabiraye viglyadu d 2 y d 8 2 ctg 8 d y d 8 l m 2 sin 2 8 y 0 displaystyle frac d 2 y d theta 2 text ctg theta frac dy d theta left lambda frac m 2 sin 2 theta right y 0 nbsp rozv yazkami yakogo ye P ℓ m cos 8 displaystyle P ell m cos theta nbsp z ℓ m displaystyle ell geq m nbsp ta l ℓ ℓ 1 displaystyle lambda ell ell 1 nbsp Tomu rivnyannya 2 ps l ps 0 displaystyle nabla 2 psi lambda psi 0 nbsp maye separabelni rozv yazki bez osoblivostej lishe todi koli l ℓ ℓ 1 displaystyle lambda ell ell 1 nbsp i ci rozv yazki proporcijni P ℓ m cos 8 cos m f 0 m ℓ displaystyle P ell m cos theta cos m varphi 0 leq m leq ell nbsp ta P ℓ m cos 8 sin m f 0 lt m ℓ displaystyle P ell m cos theta sin m varphi 0 lt m leq ell nbsp Dlya kozhnogo ℓ isnuye 2ℓ 1 funkcij z riznimi znachennyami m ta viborom sinusa chi kosinusa Usi voni ortogonalni shodo ℓ ta m pri integruvanni po poverhni sferi Zazvichaj rozv yazki zapisuyut cherez kompleksni eksponenti Y ℓ m 8 f 2 ℓ 1 ℓ m 4 p ℓ m P ℓ m cos 8 e i m f ℓ m ℓ displaystyle Y ell m theta varphi sqrt frac 2 ell 1 ell m 4 pi ell m P ell m cos theta e im varphi qquad ell leq m leq ell nbsp Funkciyi Y ℓ m 8 f displaystyle Y ell m theta varphi nbsp nazivayut sferichnimi garmonikami a viraz u kvadratnih duzhkah ye mnozhnikom normuvannya Z oznachennya priyednanih polinomiv Lezhandra dlya dodatnih ta vid yemnih m legko dokazati sho sferichni garmoniki zadovolnyayut totozhnist 5 Y ℓ m 8 f 1 m Y ℓ m 8 f displaystyle Y ell m theta varphi 1 m Y ell m theta varphi nbsp Sferichni garmoniki utvoryuyut povnij ortonormovanij nabir u sensi ryadiv Fur ye U geodeziyi geomagnetizmi ta spektralnomu analizi vikoristovuyutsya inshi fazi ta mnozhniki normuvannya Uzagalnennya RedaguvatiPriyednani polinomi Lezhandra tisno pov yazani z gipergeometrichnimi ryadami U formi sferichnih garmonik voni vidobrazhayut simetriyu sferi Rimana shodo diyi grupi Li SO 3 Poryad iz SO 3 isnuye bagato inshih grup Li tozh analogini polinomi vidpovidayut simetriyam napivprostih grup Li ta simetrichnim prostoram Rimana Grubo kazhuchi mozhna zapisati laplasian u simertrichnih prostorah todi vlasni funkciyi laplasiana mozhna vvazhati uzagalnennyam polinomiv Lezhandra v inshih umovah Div takozh RedaguvatiKutovij moment Spisok ob yektiv nazvanih na chest Adriyena Mari LezhandraLiteratura RedaguvatiArfken G B Weber H J 2001 Mathematical methods for physicists Academic Press ISBN 0 12 059825 6 Section 12 5 Uses a different sign convention Belousov S L 1962 Tables of normalized associated Legendre polynomials Mathematical tables 18 Pergamon Press Condon E U Shortley G H 1970 The Theory of Atomic Spectra Cambridge England Cambridge University Press OCLC 5388084 Chapter 3 Courant Richard Hilbert David 1953 Methods of Mathematical Physics Volume 1 New York Interscience Publischer Inc Edmonds A R 1957 Angular Momentum in Quantum Mechanics Princeton University Press ISBN 0 691 07912 9 Chapter 2 Hildebrand F B 1976 Advanced Calculus for Applications Prentice Hall ISBN 0 13 011189 9 Schach S R 1973 New Identities for Legendre Associated Functions of Integral Order and Degree Society for Industrial and Applied Mathematics Journal on Mathematical Analysis 1976 Vol 7 No 1 pp 59 69Posilannya RedaguvatiAssociated Legendre polynomials in MathWorld Legendre polynomials in MathWorldVinoski Redaguvati Courant ta Hilbert 1953 V 10 Abramowitz Milton Stegun Irene Ann red 1983 Chapter 8 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables Applied Mathematics Series 55 vid Ninth reprint with additional corrections of tenth original printing with corrections December 1972 first Washington D C New York United States Department of Commerce National Bureau of Standards Dover Publications s 332 ISBN 0 486 61272 4 LCCN 64 60036 MR 0167642 ISBN 978 0 486 61272 0 LCCN 6512253 3 From John C Slater Quantum Theory of Atomic Structure McGraw Hill New York 1960 Volume I page 309 which cites the original work of J A Gaunt Philosophical Transactions of the Royal Society of London A228 151 1929 Dong S H Lemus R 2002 The overlap integral of three associated Legendre polynomials Appl Math Lett 15 541 546 Cya totozhnist takozh vstanovlyuye zv yazok iz D matricyami Vignera i vikoristovuyetsya pri zmini v nih napryamku chasu Spivvidnoshennya mizh priyednanimi polinomami Lezhandra z m mozhna pokazati z kompleksnogo spryazhennya sferichnih garmonik Otrimano z https uk wikipedia org w index php title Priyednani funkciyi Lezhandra amp oldid 32790944