www.wikidata.uk-ua.nina.az
Cya stattya potrebuye istotnoyi pererobki Mozhlivo yiyi neobhidno dopovniti perepisati abo vikifikuvati Poyasnennya prichin ta obgovorennya na storinci Vikipediya Statti sho neobhidno polipshiti Tomu hto dodav shablon zvazhte na te shob povidomiti osnovnih avtoriv statti pro neobhidnist polipshennya dodavshi do yihnoyi storinki obgovorennya takij tekst subst polipshiti avtoru Potencialne vektorne pole 6 lipnya 2021 a takozh ne zabudte opisati prichinu nominaciyi na pidstorinci Vikipediya Statti sho neobhidno polipshiti za vidpovidnij den Potencialne ve ktorne po le u matematici vektorne pole yake mozhna predstaviti yak gradiyent deyakoyi skalyarnoyi funkciyi koordinat potencialu Neobhidnoyu i dostatnoyu umovoyu potencijnosti vektornogo polya ye rivnist nulyu rotora polya U fizici sho maye spravu z silovimi polyami matematichnu umovu potencijnosti silovogo polya mozhna predstaviti yak vimogu rivnosti nulyu roboti pri peremishenni chastinki na yaku diye pole po zamknutomu konturu Yak potencial polya v comu vipadku mozhna vibrati robotu z peremishennya probnoyi chastinki z deyakoyi dovilno vibranoyi pochatkovoyi tochki v zadanu tochku za oznachennyam cya robota ne zalezhit vid shlyahu peremishennya Napriklad potencijnimi ye statichne elektrichne pole a takozh gravitacijne pole v nyutonovij teoriyi gravitaciyi Nehaj u n displaystyle n vimirnomu mnogovidi mozhna navit z nenulovoyu vnutrishnoyu krivinoyu zadana sistema koordinat u 1 u 2 u n displaystyle u 1 u 2 dots u n i potencialne vektorne pole a displaystyle mathbf a z kovariantnimi koordinatami a i displaystyle a i yake predstavlyayetsya gradiyentom skalyarnogo potencialu ϕ ϕ u 1 u 2 u n displaystyle phi phi u 1 u 2 dots u n 1 a i i ϕ ϕ u i displaystyle 1 qquad a i nabla i phi partial phi over partial u i Pokazhemo sho neobhidnoyu i dostatnoyu umovoyu potencijnosti ye rivnist nulyu rotora polya 2 rot a i j i a j j a i 0 displaystyle 2 qquad text rot mathbf a ij nabla i a j nabla j a i 0 Neobhidnist RedaguvatiYaksho pole a displaystyle mathbf a nbsp potencialne tobto vikonuyetsya rivnist 1 to pri pidstanovci 1 v 2 oderzhuyemo 2 rot a i j i a j G i j k a k j a i G j i k a k i a j j a i 2 ϕ u i u j 2 ϕ u j u i displaystyle 2 qquad text rot mathbf a ij partial i a j Gamma ij k a k partial j a i Gamma ji k a k partial i a j partial j a i partial 2 phi over partial u i partial u j partial 2 phi over partial u j partial u i nbsp Ale ostannya riznicya dorivnyuye nulyu v silu rivnosti mishanih pohidnih Dostatnist RedaguvatiNehaj teper u nas zadano take vektorne pole sho jogo rotor skriz dorivnyuye nulyu tobto spravedliva rivnist 2 Sprobuyemo pobuduvati dlya cogo vektornogo polya takij skalyar ϕ displaystyle phi nbsp shob vikonuvalas rivnist 1 Pochnemo z rozglyadu vlastivosti krivolinijnih integraliv Nehaj mi mayemo u mnogovidi krivu L displaystyle L nbsp yaka spoluchaye dvi fiksovani tochki P displaystyle P nbsp i Q displaystyle Q nbsp Krivolinijnij integral F displaystyle Phi nbsp ye funkcionalom vid krivoyi L displaystyle L nbsp 3 F F L L a i d u i displaystyle 3 qquad Phi Phi L int L a i du i nbsp Obchislennya variaciyi cogo funkcionala provedeni v statti Teorema Stoksa dayut 4 d F i lt j rot a j i d s i j 0 displaystyle 4 qquad delta Phi int sum i lt j text rot mathbf a ji d sigma ij 0 nbsp Oskilki rotor za umovoyu skriz dorivnyuye nulyu to i variaciya funkcionala 3 tezh dorivnyuye nulyu otzhe cej funkcional ye konstantoyu yaka na zalezhit vid krivoyi pri fiksovanih kincyah krivoyi P displaystyle P nbsp i Q displaystyle Q nbsp Otzhe krivolinijnij integral 3 ye prosto funkciyeyu vid dvoh tochok kinciv krivoyi L displaystyle L nbsp 5 F F P Q displaystyle 5 qquad Phi Phi P Q nbsp Zafiksuyemo odnu iz tochok mnogovidu nehaj dlya viznachenosti ce bude pochatok sistemi koordinat O displaystyle O nbsp todi mi matimemo take skalyarne pole 6 ϕ ϕ P F O P displaystyle 6 qquad phi phi P Phi O P nbsp Nam teper treba lishe pokazati sho gradiyent cogo polya dorivnyuye a displaystyle mathbf a nbsp Rozglyanemo dvi blizki tochki P displaystyle P nbsp i P displaystyle tilde P nbsp Provedemo z pochatku koordinat krivu L displaystyle L nbsp do tochki P displaystyle P nbsp a potim prodovzhimo cyu krivu korotkim vidrizkom D L displaystyle Delta L nbsp sho ide vid tochki P displaystyle P nbsp do tochki P displaystyle P nbsp Prodovzhena kriva L L D L displaystyle tilde L L Delta L nbsp spoluchaye pochatok koordinat z tochkoyu P displaystyle tilde P nbsp Otzhe 7 ϕ P F O P F P P ϕ P D L a i d u i displaystyle 7 qquad phi tilde P Phi O P Phi P tilde P phi P int Delta L a i du i nbsp i mi mozhemo zapisati pririst funkciyi ϕ displaystyle phi nbsp cherez integral po vidrizku 8 D ϕ D L i 1 n a i d u i displaystyle 8 qquad Delta phi int Delta L sum i 1 n a i du i nbsp Rozglyanemo koordinati tochki P u 1 u 2 u n displaystyle P u 1 u 2 dots u n nbsp Nehaj tochka P displaystyle tilde P nbsp vidriznyayetsya vid neyi lishe odniyeyu haj pershoyu koordinatoyu P u 1 D u 1 u 2 u n displaystyle tilde P u 1 Delta u 1 u 2 dots u n nbsp a reshta koordinat zafiksovani Todi v integrali 8 po vidrizku vzdovzh pershoyi koordinati bude vidminnij vid nulya lishe diferencial pershoyi koordinati d u 1 displaystyle du 1 nbsp i mi oderzhimo prostij viznachenij integral 9 D ϕ u 1 u 1 D u 1 a 1 d u 1 a 1 D u 1 displaystyle 9 qquad Delta phi int u 1 u 1 Delta u 1 a 1 du 1 approx a 1 Delta u 1 nbsp Podilivshi asimptotichnu rivnist 9 na D u 1 displaystyle Delta u 1 nbsp i perehodyachi do granici mayemo 10 ϕ u 1 a 1 displaystyle 10 qquad partial phi over partial u 1 a 1 nbsp i analogichno dlya reshti koordinat Formulu 1 dovedeno Dzherela RedaguvatiA D Tevyashev O G Litvin G M Krivosheyeva L V Obuhova O G Sereda Visha matematika u prikladah ta zadachah Chastina 2 Integralne chislennya funkcij odniyeyi zminnoyi Diferencialne ta integralne chislennya funkcij bagatoh zminnih Stor 263 Harkiv 2002 Akademiya nauk Ukrayinskoyi RSR Fiziko matematichni ta tehnichni nauki Seriya A Vipuski 1 6 Stor 49 50 Kiyiv Naukova dumka 1990 Otrimano z https uk wikipedia org w index php title Potencialne vektorne pole amp oldid 37765107