www.wikidata.uk-ua.nina.az
Lema Dzhonsona Lindenshtrausa angl Johnson Lindenstrauss lemma tverdit sho nabir tochok u bagatovimirnomu prostori mozhe buti vbudovanij u prostir znachno menshogo vimiru takim chinom sho vidstani mizh tochkami zberezhutsya majzhe bez vikrivlen Vidpovidni proyekciyi mozhut buti ortogonalnimi Lema nazvana na chest Vilyama B Dzhonsona ta Dzhorama Lindenshtrausa 1 Lema ye osnovoyu algoritmiv stisnennya zobrazhen mashinnogo navchannya Znachna chastina danih sho zberigayutsya ta obroblyayutsya na komp yuterah zokrema tekst i zobrazhennya mozhe buti predstavlena u viglyadi tochok u prostori odnak osnovni algoritmi roboti z takimi danimi yak pravilo shvidko vtrachayut produktivnist po miri zbilshennya rozmirnosti Tomu bazhano zmenshiti rozmirnist danih takim chinom shob zberegti vidpovidnu strukturu Lema Dzhonsona Lindenshtrausa klasichnij rezultat u cij sferi Zmist 1 Formulyuvannya 2 Pro dovedennya 3 Alternativne formulyuvannya 4 Shvidke peretvorennya Dzhonsona Lindenshtrausa 5 Tenzorni proyekciyi bagatovimirnih prostoriv 6 Div takozh 7 Primitki 8 DzherelaFormulyuvannya red Nehaj 0 lt e lt 1 displaystyle 0 lt varepsilon lt 1 nbsp Todi dlya lyuboyi mnozhini X displaystyle X nbsp iz n displaystyle n nbsp tochok v R N displaystyle mathbb R N nbsp i m gt 8 ln n e 2 displaystyle m gt tfrac 8 cdot ln n varepsilon 2 nbsp isnuye linijne vidobrazhennya f R N R m displaystyle f mathbb R N rightarrow mathbb R m nbsp take sho 1 e u v 2 f u f v 2 1 e u v 2 displaystyle 1 varepsilon cdot u v 2 leq f u f v 2 leq 1 varepsilon cdot u v 2 nbsp dlya usih u v X displaystyle u v in X nbsp Vipadkova ortogonalna proyekciya f displaystyle f nbsp na m displaystyle m nbsp vimirnij pidprostir zadovolnyaye vimozi Odin z dokaziv lemi zasnovanij na vlastivosti koncentraciyi miri Pro dovedennya red Odne z doveden grunuyetsya na vlastivosti koncentraciyi miri Alternativne formulyuvannya red Sporidnenoyu lemoyu ye lema Dzhonsona Lindenshtrausa pro rozpodil Cya distributivna lema stverdzhuye sho dlya lyubogo 0 lt e d lt 1 2 i pozitivnogo cilogo chisla d isnuye rozpodil Rk d z yakogo viluchayetsya matricya A tak sho dlya k O e 2log 1 d i dlya lyubogo vektora odinichnoyi dovzhini x Rd spravedlive tverdzhennya 2 P A x 2 2 1 gt e lt d displaystyle P Vert Ax Vert 2 2 1 gt varepsilon lt delta nbsp Vidpovidni matrici A otrimali nazvu matric Dzhonsona Lindenshtrausa angl JL matrices Po suti dana lema harakterizuye tochnist aproksimaciyi matrichnoyu proyekciyeyu bagatovimirnogo rozpodilu Zv yazok distributivnoyi versiyi lemi z yiyi ekvivalentom mozhlivo otrimati yaksho zadati x u v u v 2 displaystyle x u v u v 2 nbsp i d lt 1 n 2 displaystyle delta lt 1 n 2 nbsp dlya yakoyis pari u v v X Shvidke peretvorennya Dzhonsona Lindenshtrausa red Mozhlivist otrimannya proyekcij menshoyi rozmirnosti ye duzhe vazhlivim rezultatom zaznachenih lem odnak neobhidno shob taki proyekciyi mozhna bulo otrimati za minimalnij chas Operaciya mnozhennya matrici A na vektor x sho figuruye v distributivnij lemi zajmaye chas O kd Tomu buli provedeni doslidzhennya shodo otrimannya rozpodiliv dlya yakih matrichno vektornij dobutok mozhe buti obchisleno shvidshe nizh za chas O kd Zokrema Ejlonom i Bernarom Shazelem v 2006 r bulo zaproponovano shvidke peretvorennya Dzhonsona Lindenshtrausa ShPDL yake dozvolilo vikonati matrichno vektornij dobutok za chas d log d k 2 g displaystyle d log d k 2 gamma nbsp dlya lyuboyi konstanti g gt 0 displaystyle gamma gt 0 nbsp 3 Osoblivij vipadok stanovlyat tenzorni vipadkovi proyekciyi dlya yakih vektor odinichnoyi dovzhini x maye tenzornu strukturu i JL matrici A mozhut buti virazheni cherez torcevij dobutok kilkoh matric z odnakovoyu kilkistyu nezalezhnih ryadkiv Tenzorni proyekciyi bagatovimirnih prostoriv red Dlya predstavlennya tenzornih proyekcij sho vikoristovuyutsya v ShPDL v bagatovimirnomu vipadku u viglyadi kombinaciyi dvoh JL matric mozhe buti vikoristano torcevij dobutok angl face splitting product zaproponovanij v 1996 r Slyusarem V I 4 5 6 7 8 9 Rozglyanemo dvi JL matrici proyekcij bagatovimirnogo prostoru C R 3 3 displaystyle C in mathbb R 3 times 3 nbsp i D R 3 3 displaystyle D in mathbb R 3 times 3 nbsp Yih torcevij dobutok C D displaystyle C bullet D nbsp 4 5 6 7 8 maye vid C D C 1 D 1 C 2 D 2 C 3 D 3 displaystyle C bullet D left begin array c C 1 otimes D 1 hline C 2 otimes D 2 hline C 3 otimes D 3 end array right nbsp JL matrici sho viznacheni u takij sposib mayut menshe vipadkovih bit i mozhut shvidko peremnozhuvatisya na vektori tenzornoyi strukturi zavdyaki totozhnosti 6 C D x y C x D y C x 1 D y 1 C x 2 D y 2 displaystyle mathbf C bullet mathbf D x otimes y mathbf C x circ mathbf D y left begin array c mathbf C x 1 mathbf D y 1 mathbf C x 2 mathbf D y 2 vdots end array right nbsp de displaystyle circ nbsp poelementnij dobutok Adamara Perehid vid matrici A do torcevogo dobutku dozvolyaye operuvati matricyami menshogo rozmiru U comu konteksti ideya torcevogo dobutku bula vikoristana v 2010 10 dlya virishennya zavdannya diferencijnoyi privatnosti angl differential privacy Krim togo analogichni obchislennya buli zadiyani dlya efektivnoyi realizaciyi yadrovih metodiv mashinnogo navchannya ta v inshih algoritmah linijnoyi algebri 11 V 2020 r bulo pokazano sho dlya stvorennya proyekcij maloyi rozmirnosti v torcevomu dobutku dosit vikoristovuvati bud yaki matrici z vipadkovimi nezalezhnimi ryadkami odnak bilsh silni garantiyi dosyagnennya malih spotvoren proyekcij bagatovimirnih prostoriv mozhut buti dosyagnuti za dopomogoyu dijsnih gausovih matric Dzhonsona Lindenshtrausa 12 Yaksho matrici C 1 C 2 C c displaystyle C 1 C 2 dots C c nbsp ye nezalezhnimi 1 displaystyle pm 1 nbsp abo gausovimi matricyami to kombinovana matricya C 1 C c displaystyle C 1 bullet dots bullet C c nbsp zadovolnyaye lemi Dzhonsona Lindenshtrausa pro rozpodil yaksho kilkist strok stanovit ne menshe O ϵ 2 log 1 d ϵ 1 1 c log 1 d c displaystyle O epsilon 2 log 1 delta epsilon 1 tfrac 1 c log 1 delta c nbsp 12 Dlya velikih ϵ displaystyle epsilon nbsp distributivna lema Dzhonsona Lindenshtrausa vikonuyetsya strogo pri comu nizhnya granicya velichini vikrivlen aproksimaciyi maye eksponencialnu zalezhnist log 1 d c displaystyle log 1 delta c nbsp 12 Proponuyutsya alternativni konstrukciyi JL matric shob obijti ce obmezhennya 12 Div takozh red Tenzornij sketchPrimitki red Johnson William B Lindenstrauss Joram 1984 Conference in modern analysis and probability New Haven Conn 1982 U Beals Richard Beck Anatole Bellow Alexandra ta in Conference in modern analysis and probability New Haven Conn 1982 Contemporary Mathematics 26 Providence RI American Mathematical Society pp 189 206 doi 10 1090 conm 026 737400 ISBN 0 8218 5030 X Johnson William B Lindenstrauss Joram 1984 Conference in modern analysis and probability New Haven Conn 1982 U Beals Richard Beck Anatole Bellow Alexandra ta in Conference in modern analysis and probability New Haven Conn 1982 Contemporary Mathematics 26 Providence RI American Mathematical Society pp 189 206 doi 10 1090 conm 026 737400 ISBN 0 8218 5030 X https archive org details conferenceinmode0000conf page 189 Ailon Nir Chazelle Bernard 2006 Proceedings of the 38th Annual ACM Symposium on Theory of Computing Proceedings of the 38th Annual ACM Symposium on Theory of Computing New York ACM Press pp 557 563 doi 10 1145 1132516 1132597 ISBN 1 59593 134 1 a b Slyusar V I 27 grudnya 1996 End products in matrices in radar applications Radioelectronics and Communications Systems 1998 Vol 41 Number 3 50 53 Arhiv originalu za 27 lipnya 2020 Procitovano 31 lipnya 2020 a b Slyusar V I 20 travnya 1997 Analytical model of the digital antenna array on a basis of face splitting matrix products Proc ICATT 97 Kyiv 108 109 Arhiv originalu za 25 sichnya 2020 Procitovano 31 lipnya 2020 a b v Slyusar V I 15 veresnya 1997 New operations of matrices product for applications of radars Proc Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory DIPED 97 Lviv 73 74 Arhiv originalu za 25 sichnya 2020 Procitovano 31 lipnya 2020 a b Slyusar V I 13 bereznya 1998 A Family of Face Products of Matrices and its Properties Cybernetics and Systems Analysis C C of Kibernetika I Sistemnyi Analiz 1999 35 3 379 384 doi 10 1007 BF02733426 Arhiv originalu za 25 sichnya 2020 Procitovano 31 lipnya 2020 a b Slyusar V I 2003 Generalized face products of matrices in models of digital antenna arrays with nonidentical channels Radioelectronics and Communications Systems 46 10 9 17 Arhiv originalu za 20 veresnya 2020 Procitovano 31 lipnya 2020 Anna Esteve Eva Boj amp Josep Fortiana 2009 Interaction Terms in Distance Based Regression Communications in Statistics Theory and Methods 38 19 P 3501 1 Arhivovano 26 kvitnya 2021 u Wayback Machine Kasiviswanathan Shiva Prasad et al The price of privately releasing contingency tables and the spectra of random matrices with correlated rows Proceedings of the forty second ACM symposium on Theory of computing 2010 Woodruff David P Sketching as a Tool for Numerical Linear Algebra Theoretical Computer Science 10 1 2 2014 1 157 a b v g Ahle Thomas Kapralov Michael Knudsen Jakob Pagh Rasmus Velingker Ameya Woodruff David Zandieh Amir 2020 Oblivious Sketching of High Degree Polynomial Kernels ACM SIAM Symposium on Discrete Algorithms Association for Computing Machinery doi 10 1137 1 9781611975994 9 Dzherela red Achlioptas Dimitris 2003 Database friendly random projections Johnson Lindenstrauss with binary coins Journal of Computer and System Sciences 66 4 671 687 doi 10 1016 S0022 0000 03 00025 4 Journal version of a paper previously appearing at PODC 2001 Dasgupta Sanjoy Gupta Anupam 2003 An elementary proof of a theorem of Johnson and Lindenstrauss Random Structures amp Algorithms 22 1 60 65 doi 10 1002 rsa 10073 Arhiv originalu za 5 serpnya 2012 Procitovano 31 lipnya 2020 Landweber Peter Lazar Emanuel Patel Neel 2015 On fiber diameters of continuous maps Arhivovano 10 veresnya 2016 u Wayback Machine Otrimano z https uk wikipedia org w index php title Lema Dzhonsona Lindenshtrausa amp oldid 36466362