Підіймальна сила — це складова загальної аеродинамічної сили, яка перпендикулярна до вектора швидкості руху повітряного потоку і діє на аеродинамічний профіль у повітряному потоці (на відміну від складової загальної аеродинамічної сили, яка паралельна вектору швидкості і визначається як аеродинамічний опір).
З фізичної точки зору, природа підіймальної сили ґрунтується на двох законах: закону Бернуллі (обернена залежність тиску середовища на тіло від швидкості його обтікання), і Третього закону Ньютона (сила F, з якою крило в повітряному потоці тисне на повітряний потік, відхиляючи його вниз, створює силу протидії -F, з якою повітряний потік тисне на крило з протилежним напрямом вгору). Відповідно, підіймальна сила крила виникає внаслідок різниці тиску над крилом, і під ним.
Аеродинамічна формула підіймальної сили крила має вигляд:
де:
- Y — підіймальна сила (Н)
- Cy — коефіцієнт підіймальної сили (безрозмірнісна величина, що визначає підіймальну силу крила певного профілю з відомим кутом атаки)
- ρ — густина повітря на поточній висоті польоту (кг/м³)
- V — швидкість повітряного потоку (м/с)
- S — площа крила (м²)
Таким чином, підіймальна сила крила залежить від коефіцієнта підіймальної сили, густини (щільності) повітря, швидкості повітряного потоку, і , причому у всіх випадках напрямлена вгору, перпендикулярно до набіжного повітряного потоку.
Загальний огляд
Плин рідини (або газу), що тече довкола поверхні тіла, впливає на нього деякою силою. Немає різниці чи це рідина плине повз нерухоме тіло чи то тіло пересувається крізь сталий об'єм рідини. Підіймальна сила це компонент цієї сили, який перпендикулярний до напряму потоку, що насувається. Підіймальна сила завжди супроводжується силою опору, котрий є складовою поверхневої сили паралельної до напрямку плину рідини.
Підіймальну силу зазвичай пов'язують із крилом літака, хоча вона утворюється насправді й іншими обтічними тілами в повітрі, як-от пропелер, кайт, гвинт, спойлер автомобіля, морські вітрила і повітряні турбіни, а також кілем, кермом і підводними крилами кораблів. Підіймальну силу також використовують тварини, особливо птахи, кажани, комахи і навіть рослини, завдяки формі насіння деяких дерев.
Хоча загальне значення слова підіймати передбачає щось протилежне силі тяжіння, підіймальна сила загалом технічно може мати будь-який напрямок відносно сили тяжіння, оскільки вона задається лише напрямом плину, а не тяжінням. Коли літак перебуває в горизонтальному прямому польоті, більша частина підіймальної сили дійсно буде протилежною тяжінню. Однак, коли літак в наборі висоти, зниженні чи в крені, підіймальна сила відхилена від вертикалі. Підіймальна сила може навіть бути напрямлена донизу в деяких аеробатичних маневрах, або у спойлера на перегоновому автомобілі. Підіймальна сила також може бути переважно горизонтальною, наприклад на вітрильному судні.
Спрощене фізичне пояснення підіймальної сили профілю крила
Аеродинамічний профіль має таку обтічну форму, що здатна утворювати підіймальну силу по величині більшу за протидію. Плоска поверхня також може утворювати підіймальну силу, але не так діяльно як аеродинамічний профіль, із набагато більшим опором.
Існує декілька способів пояснення як профіль утворює підіймальну силу. Деякі є складнішими або більш математично точні ніж інші; а деякі обґрунтовано не правильні. Наприклад, існують пояснення, що ґрунтуються безпосередньо на Ньютонових законах руху і пояснення основані на законі Бернуллі. Обидва можна використовувати для пояснення підіймальної сили.
Відхилення плину потоку і закони Ньютона
Профіль крила утворює підіймальну силу створюючи силу напруження вниз на повітря, яке плине повз нього. Відповідно до третього закону Ньютона, повітря повинно створити однакову протилежну силу (направлену вгору) на профіль, яка і є підіймальною силою.
Потік повітря змінює напрям під час проходження повз профіль крила і плине траєкторією що відхиляється вниз. Відповідно до другого закону Ньютона, така зміна потоку повинна бути викликана силою, спрямованою донизу що діє на повітря, і спричиненою профілем. Тоді, відповідно до третього закону Ньютона, повітря повинно утворювати протилежну силу, направлену вгору на профіль. Загальний результат полягає в тому, що сила протидії — підіймальна сила, утворюється у відповідь на зміну напрямку руху повітря. У разі з крилом літака, крило породжує силу направлену вниз, а повітря породжує силу направлену вгору, котра діє на крило.
Поворот потоку донизу, спричинює не лише нижня частина поверхні профілю, але і повітря яке протікає верхньою частиною, має значний внесок в те, що плин повітря направляється вниз.
Збільшення швидкості потоку і принцип Бернуллі
Закон Бернуллі стверджує, що у разі рівного плину повітря з постійною енергією, коли воно протікає крізь ділянку меншого тиску, воно прискорюється і навпаки. Отже, існує прямий математичний зв'язок між тиском і швидкістю, тож, якщо нам відома швидкість руху в усіх точках повітряного потоку ми можемо розрахувати тиск і навпаки. Для будь-якого аеродинамічного профілю, котрий утворює підіймальну силу, повинна існувати різниця тиску, тобто менший середній тиск повітря в верхній частині порівняно з нижньою. Принцип Бернуллі стверджує, що ця різниця тиску повинна врівноважуватися різницею швидкості руху потоку.
Збереження маси
Починаючи із схематичного представлення потоку, в теорії і дослідах, збільшення швидкості плину над верхньою частиною поверхні, можна пояснити з точки зору стискання струменів (умовних труб) потоку і збереження маси.
Якщо вважати, що повітря є нестисненим, швидкість об'ємного плину (тобто літрів на хвилину) має бути постійним в кожному струмені оскільки матерія не може утворитися чи зникнути. Якщо струмінь стає тоншим, швидкість плину повинна зрости у звуженій частині, аби зберегти постійну швидкість. Це є застосування закону збереження маси.
Верхні струменеві трубки звужуються, коли вони перетікають довкола профілю. Закон збереження мас приводить до твердження, що швидкість потоку має зрости, оскільки площа струменю зменшується. Так само, нижні струмені розширюються, а течія сповільнюється.
Із принципу Бернуллі, тиск на верхню поверхню, де потік рухається швидше, має бути меншим за тиск на нижній частині профілю, де потік плине повільніше. Існує різниця тиску, яка утворює загальну аеродинамічну силу, яка направлена догори.
Вади тлумачення, що засновані на законі Бернуллі
- Вищенаведене пояснення, не роз'яснює чому розмір струменів змінюється. Аби зрозуміти, через що плин повітря є саме таким, необхідний більш складний аналіз.
- Іноді, для доведення причини — чому змінюється розмір струменів, наводиться аргумент із геометрії: стверджується що верхня частина "перешкоджає" або "стискає" повітря більше ніж нижня, звідси виникає звуження струменів. Для звичайної форми профілю крила, в яких нижня частина більш плоска, а верх опуклий, це має якийсь інтуїтивний сенс. Але це не роз'яснює як плоскі поверхні, симетричні профілі, вітрила вітрильників, або звичайні профілі, під час перевернутого польоту можуть утворювати підіймальну силу, і спроби розрахувати підіймальну силу на основі сумарного звужування не дає змогу передбачити експериментальні результати.
- Загальне пояснення, засноване на принципі Бернуллі, говорить про те, що повітря повинне проходити повз верхню і нижню частину профілю за однаковий час і це визначає збільшення швидкості на (довшому) верхньому боці крила. Але це твердження є хибним; зазвичай відбувається так, що частинки плину проходячи повз верхню поверхню досягають задньої крайки крила раніше ніж коли проходять повз нижню.
Різниця тиску
Тиск це сила напруження на одиницю площі, утворюється повітрям і діє на нього самого і на поверхні до яких воно торкається. Підіймальна сила передається через тиск, що діє перпендикулярно до поверхні аеродинамічного профілю. Повітря постійно має фізичний дотик з усіма точками. Отже, загальна сила виражається як різниця тиску. Напрям загальної сили випливає з того, що середній тиск на верхній частині поверхні є меншим ніж середній тиск на нижній частині.
Виникнення цієї різниці тиску пов’язано із вигнутим плином повітря. Кожного разу, коли рідина плине вигнутою траєкторією, утворюється градієнт тиску, перпендикулярний напрямку плину, в якому більший тиск утворюється на зовнішній частині кривої і менший на внутрішній. Цей прямий зв'язок між вигнутими струменями плину і різницею тиску, був отриманий із другого закону Ньютона ще 1754 року Леонардом Ейлером:
Ліва частина рівняння задає різницю тиску, що перпендикулярна плину потоку. В правій частині ρ це густина, v це швидкість, і R радіус викривлення. Ця формула показує, що більші швидкості і значніша вигнутість, створюють більшу різницю тиску і що для прямолінійного потоку (R → ∞) різниця тиску дорівнюватиме нулю.
Форма аеродинамічного профілю
Підіймальна сила залежить від форми аеродинамічного профілю, особливо від степені його [en] (кривини, за якої верхня частина поверхні більш вигнута ніж нижня частина поверхні). Взагалі, збільшення вигнутості збільшує підіймальну силу.
Вигнуті аеродинамічні профілі здатні утворювати підіймальну силу при нульовому куті атаки. Коли лінія хорди в горизонті, задня крайка крила направлена донизу отже повітря, яке протікає повз задню крайку відхиляється вниз. Коли вигнутий профіль перевернутий навпаки, можна підібрати такий кут атаки, що підіймальна сила буде направлена вгору. Це пояснює як літак може здійснювати перевернутий політ.
Кут атаки
Кут атаки це кут між [en] аеродинамічного профілю і набіглим плином повітря. Симетричний аеродинамічний профіль буде утворювати нульову підіймальну силу у разі нульового кута атаки. Але із збільшенням кута атаки, повітря відхилятиметься на більший кут і вертикальна складова швидкості повітряного плину збільшується, завдяки цьому утворюючи більшу підіймальну силу. Для малих кутів симетричний профіль буде утворювати підіймальну силу пропорційну до величини кута атаки.
Із збільшенням кута атаки, підіймальна сила набуває найбільшого значення при деякому куті; збільшення кута атаки більше ніж цей (критичний кут атаки) призводить до відокремлення потоку від верхньої частини крила; потік перестає менше відхилятися вниз і профіль утворює менше підіймальної сили. Це явище називають звалюванням.
Параметри плину та інше
До навколишніх умов середовища, що впливають на підіймальну силу стосуються щільність, в'язкість і швидкість плину. Підіймальна сила пропорційна щільності середовища і приблизно пропорційна квадрату швидкості плину. Щільність, зі свого боку, може залежати від температури і, на високих швидкостях що перевищують швидкість звука в середовищі, ефектами стискання. Підіймальна сила також залежить від розміру крила, і загалом пропорційна від площі крила, що спроектована на напрям підіймальної сили. В теорії аеродинаміки й інженерних розрахунках часто є зручним виразити підіймальну силу кількісно через "коефіцієнт підіймальної сили", що визначений таким чином, щоби врахувати ці пропорційні параметри.
Математичні теорії підіймальної сили
Математичні теорії підіймальної сили основані на механіці суцільних рідин, припускаючи що повітря плине як неперервна матерія. Підіймальна сила утворюється у відповідності до основоположних законів фізики, найбільш потрібними є наступні три закони:
- Збереження імпульсів, що натомість є наслідком Ньютонівських законів руху, особливо другого закону Ньютона, який пов'язує силу прикладену до елементу повітря із зміною швидкості імпульсу.
- Збереження мас, який припускає, що поверхня профілю крила є непроникною для повітря, котре перетікає довкола.
- Збереження енергії, який говорить, що енергія не може бути створена чи знищена.
Коефіцієнт підіймальної сили
Коефіцієнт підіймальної сили, що безпосередньо впливає на підіймальну силу крила — це безрозмірна величина, що визначає підіймальну силу крила певного профілю в залежності від куту атаки. Коефіцієнт визначається дослідно в аеродинамічній трубі, або за теоремою Жуковского. Формулу розрахунку підіймальної сили через коефіцієнт підіймальної сили розробили брати Райт і Джон Смітон на початку XX століття.
Див. також
Примітки
- . NASA Glenn Research Center. Архів оригіналу за березня 9, 2009. Процитовано 4 березня 2009.
- The amount of aerodynamic lift will be (usually slightly) more or less than gravity depending on the thrust level and vertical alignment of the thrust line. A side thrust line will result in some lift opposing side thrust as well.
- Clancy, L. J., Aerodynamics, Section 14.6
- Clancy, L. J., Aerodynamics, Section 5.2
- "Існує багато теорій як утворюється підіймальна сила. На жаль, багато з цих теорій що можна прочитати в енциклопедіях, на веб сторінках або навіть у книжках є невірними, спричиняючи не потрібний безлад думок у студентів." NASA http://www.grc.nasa.gov/WWW/K-12/airplane/wrong1.html [ 27 квітня 2014 у Wayback Machine.]
- "Більшість текстів наводять формулу Бернуллі без виведення, а також без елементарного пояснення. Якщо говорять про підіймальну силу аеродинамічного профілю, пояснення і діаграми майже завжди неправильні. Принаймні для ввідного курсу, підіймальну силу слід пояснювати простіше з точки зору закону Ньютона, де тяга є рівною швидкості зміни моменту низхідного повітря з часом." Cliff Swartz et al. Quibbles, Misunderstandings, and Egregious Mistakes - Survey of High-School Physics Texts THE PHYSICS TEACHER Vol. 37, May 1999 pg 300 http://aapt.scitation.org/doi/abs/10.1119/1.880274 [ 25 серпня 2019 у Wayback Machine.]
- "Одним із пояснень того як крило літака утворює підіймальну силу, є те, що вона є результатом форми профілю крила, повітря плине швидше повз верхню частину ніж нижню, тому що потрібно обігнути більший шлях. І звісно, якщо привести в приклад тонкий профіль вітрила це пояснення не працює." The Aerodynamics of Sail Interaction by Arvel Gentry Proceedings of the Third AIAA Symposium on the Aero/Hydronautics of Sailing 1971 http://www.arvelgentry.com/techs/The%20Aerodynamics%20of%20Sail%20Interaction.pdf [ 7 липня 2011 у Wayback Machine.]
- "Часто в якості пояснення приводять приклад, що шлях, який треба здолати по верхній частині крила є довшим, тому повітря повинне рухатися швидже. Це пояснення є невірним." A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am. J. Phys. Vol.55 No.January 1, 1987
- "Підіймальна сила що діє на тіло має просту природу...це реакція твердого тіла на поворот рухомої рідини...Чому плин потоку поводить себе в такий спосіб? Ось де з'являється складність, тому що ми маємо справу із плином. ...Причиною повороту потоку є одночасне збереження маси, моменту (як лінійного так і кутового), і енергії потоку. І це не зрозуміло для рідкого стану, оскільки маса може рухатися і перерозподілятися (на відміну від твердого тіла), але може робити це лише таким чином щоб зберегти момент (масу на швидкість) і енергію (масу на швидкість в квадраті)... Зміна швидкості в одному напрямі, може призвести до зміни швидкості в перпендикулярному напрямку в потоці, що не відбувається в механіці твердого тіла... Точне описання того як рухається потік є складною задачею; занадто простою для уявлення багатьма людьми. Тому ми створюємо спрощені "моделі". І коли ми спрощуємо, ми залишаємо щось за межами. Таким чином модель є не досконалою. Більшість доводів про підіймальну силу роблять люди, що знаходять недоліки різних моделей, тому їх аргументи як правило досить законні." Tom Benson of NASA's Glenn Research Center in an interview with AlphaTrainer.Com http://www.alphatrainer.com/pages/corner.htm [ 27 квітня 2012 у Wayback Machine.]
- "Both approaches are equally valid and equally correct, a concept that is central to the conclusion of this article." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/fluids/Bernoulli_Newton_lift.pdf [ 11 квітня 2009 у Wayback Machine.]
- Ison, David, , Plane & Pilot, архів оригіналу за 24 вересня 2015, процитовано 14 січня 2011
- "...ефект, який створює крило, воно надає потоку повітря компонент швидкості, що направлений вниз. Силою протидії відхиленою повітряної маси повинна бути сила, яка створює протилежний рівний компонент." In: Halliday, David; Resnick, Robert, Fundamentals of Physics 3rd Edition, John Wiley & Sons, с. 378
- Anderson and Eberhardt (2001)
- Langewiesche (1944)
- "When air flows over and under an airfoil inclined at a small angle to its direction, the air is turned from its course. Now, when a body is moving in a uniform speed in a straight line, it requires force to alter either its direction or speed. Therefore, the sails exert a force on the wind and, since action and reaction are equal and opposite, the wind exerts a force on the sails." In: Morwood, John, Sailing Aerodynamics, Adlard Coles Limited, с. 17
- "Lift is a force generated by turning a moving fluid... If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is changed in magnitude, direction, or both. Changing the velocity creates a net force on the body." . NASA Glenn Research Center. Архів оригіналу за липня 5, 2011. Процитовано 7 липня 2009.
- "Essentially, due to the presence of the wing (its shape and inclination to the incoming flow, the so-called angle of attack), the flow is given a downward deflection, as shown in Fig. 2. It is Newton’s third law at work here, with the flow then exerting a reaction force on the wing in an upward direction, thus generating lift." Vassilis Spathopoulos Flight Physics for Beginners: Simple Examples of Applying Newton’s Laws The Physics Teacher Vol. 49, September 2011 pg 373 http://tpt.aapt.org/resource/1/phteah/v49/i6/p373_s1 [Архівовано 18 червня 2013 у Archive.is]
- "The main fact of all heavier-than-air flight is this: the wing keeps the airplane up by pushing the air down." In: Langewiesche, Wolfgang (1990), Stick and Rudder: An Explanation of the Art of Flying, McGraw-Hill, с. 6–10, ISBN
- "Birds and aircraft fly because they are constantly pushing air downwards: L = dp/dt Here L is the lift force and dp/dt is the rate at which downward momentum is imparted to the airflow." Flight without Bernoulli Chris Waltham THE PHYSICS TEACHER Vol. 36, Nov. 1998 http://www.df.uba.ar/users/sgil/physics_paper_doc/papers_phys/fluids/fly_no_bernoulli.pdf [ 28 вересня 2011 у Wayback Machine.]
- Clancy, L. J.; Aerodynamics, Pitman 1975, page 76: "This lift force has its reaction in the downward momentum which is imparted to the air as it flows over the wing. Thus the lift of the wing is equal to the rate of transport of downward momentum of this air."
- "...if the air is to produce an upward force on the wing, the wing must produce a downward force on the air. Because under these circumstances air cannot sustain a force, it is deflected, or accelerated, downward. Newton's second law gives us the means for quantifying the lift force: Flift = m∆v/∆t = ∆(mv)/∆t. The lift force is equal to the time rate of change of momentum of the air." Norman F. Smith "Bernoulli and Newton in Fluid Mechanics" The Physics Teacher 10, 451 (1972); DOI:10.1119/1.2352317
- "A complete statement of Bernoulli's Theorem is as follows: "In a flow where no energy is being added or taken away, the sum of its various energies is a constant: consequently where the velocity increases the pressure decreases and vice versa." Smith, Norman F. Bernoulli, Newton and Dynamic Lift Part I. School Science and Mathematics. 73 (3): 181—186. doi:10.1111/j.1949-8594.1973.tb08998.x.
- Anderson (2004).
- "The effect of squeezing streamlines together as they divert around the front of an airfoil shape is that the velocity must increase to keep the mass flow constant since the area between the streamlines has become smaller." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). (PDF) оригіналу за 11 квітня 2009. Процитовано 10 вересня 2009.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "There is no way to predict, from Bernoulli's equation alone, what the pattern of streamlines will be for a particular wing." Halliday and Resnick Fundamentals of Physics 3rd Ed. Extended pg 378
- "The generation of lift may be explained by starting from the shape of streamtubes above and below an airfoil. With a constriction above and an expansion below, it is easy to demonstrate lift, again via the Bernoulli equation. However, the reason for the shape of the streamtubes remains obscure..." Jaakko Hoffren Quest for an Improved Explanation of Lift American Institute of Aeronautics and Astronautics 2001 pg 3 (PDF). Архів оригіналу (PDF) за 7 грудня 2013. Процитовано 26 липня 2012.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "There is nothing wrong with the Bernoulli principle, or with the statement that the air goes faster over the top of the wing. But, as the above discussion suggests, our understanding is not complete with this explanation. The problem is that we are missing a vital piece when we apply Bernoulli’s principle. We can calculate the pressures around the wing if we know the speed of the air over and under the wing, but how do we determine the speed?" How Airplanes Fly: A Physical Description of Lift David Anderson and Scott Eberhardt Archived copy. оригіналу за 26 січня 2016. Процитовано 26 січня 2016.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "The problem with the "Venturi" theory is that it attempts to provide us with the velocity based on an incorrect assumption (the constriction of the flow produces the velocity field). We can calculate a velocity based on this assumption, and use Bernoulli's equation to compute the pressure, and perform the pressure-area calculation and the answer we get does not agree with the lift that we measure for a given airfoil." NASA Glenn Research Center . Архів оригіналу за 17 липня 2012. Процитовано 26 липня 2012.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "A concept...uses a symmetrical convergent-divergent channel, like a longitudinal section of a Venturi tube, as the starting point. It is widely known that, when such a device is put in a flow, the static pressure in the tube decreases. When the upper half of the tube is removed, a geometry resembling the airfoil is left, and suction is still maintained on top of it. Of course, this explanation is flawed too, because the geometry change affects the whole flowfield and there is no physics involved in the description." Jaakko Hoffren Quest for an Improved Explanation of Lift Section 4.3 American Institute of Aeronautics and Astronautics 2001 (PDF). Архів оригіналу (PDF) за 7 грудня 2013. Процитовано 26 липня 2012.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "This answers the apparent mystery of how a symmetric airfoil can produce lift. ... This is also true of a flat plate at non-zero angle of attack." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton Archived copy (PDF). (PDF) оригіналу за 11 квітня 2009. Процитовано 10 вересня 2009.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "This classic explanation is based on the difference of streaming velocities caused by the airfoil. There remains, however, a question: How does the airfoil cause the difference in streaming velocities? Some books don't give any answer, while others just stress the picture of the streamlines, saying the airfoil reduces the separations of the streamlines at the upper side (Fig. 1). They do not say how the airfoil manages to do this. Thus this is not a sufficient answer." Klaus Weltner Bernoulli's Law and Aerodynamic Lifting Force The Physics Teacher February 1990 p. 84. http://scitation.aip.org/getpdf/servlet/GetPDFServlet?filetype=pdf&id=PHTEAH000028000002000084000001&idtype=cvips&prog=normal[недоступне посилання з квітня 2019]
- "...there is nothing in aerodynamics requiring the top and bottom flows having to reach the trailing edge at the same time. This idea is a completely erroneous explanation for lift. The flow on top gets to the trailing edge long before the flow on the bottom because of the circulation flow field." Arvel Gentry Origins of Lift (PDF). Архів оригіналу (PDF) за 13 серпня 2012. Процитовано 26 липня 2012.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - A uniform pressure surrounding a body does not create a net force. (See buoyancy). Therefore pressure differences are needed to exert a force on a body immersed in a fluid. For example, see: (1967), An Introduction to Fluid Dynamics, Cambridge University Press, с. 14—15, ISBN
- "...if a streamline is curved, there must be a pressure gradient across the streamline..."Babinsky, Holger (November 2003), How do wings work? (PDF), Physics Education
- Thus a distribution of the pressure is created which is given in Euler's equation. The physical reason is the aerofoil which forces the streamline to follow its curved surface. The low pressure at the upper side of the aerofoil is a consequence of the curved surface." A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am. J. Phys. Vol.55 No.January 1, 1987 pg 53 http://aapt.scitation.org/doi/pdf/10.1119/1.14960 [ 28 квітня 2021 у Wayback Machine.]
- Clancy (1975), Section 5.2
- Abbott, and von Doenhoff (1958), Section 4.2
- "With an angle of attack of 0°, we can explain why we already have a lifting force. The air stream behind the aerofoil follows the trailing edge. The trailing edge already has a downward direction, if the chord to the middle line of the profile is horizontal." Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am. J. Phys. 55(1), January 1987 p. 52
- "...the important thing about an aerofoil (say an aircraft wing) is not so much that its upper surface is humped and its lower surface is nearly flat, but simply that it moves through the air at an angle. This also avoids the otherwise difficult paradox that an aircraft can fly upside down!" N. H. Fletcher Mechanics of Flight Physics Education July 1975 http://iopscience.iop.org/0031-9120/10/5/009/pdf/0031-9120_10_5_009.pdf
- "It requires adjustment of the angle of attack, but as clearly demonstrated in almost every air show, it can be done." hyperphysics Georgia State University Department of Physics and Astronomy http://hyperphysics.phy-astr.gsu.edu/hbase/fluids/airfoil.html#c2 [ 8 липня 2012 у Wayback Machine.]
- "You can argue that the main lift comes from the fact that the wing is angled slightly upward so that air striking the underside of the wing is forced downward. The Newton's 3rd law reaction force upward on the wing provides the lift. Increasing the angle of attack can increase the lift, but it also increases drag so that you have to provide more thrust with the aircraft engines" hyperphysics Georgia State University Department of Physics and Astronomy Archived copy. оригіналу за 14 жовтня 2012. Процитовано 26 липня 2012.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title () - "If we enlarge the angle of attack we enlarge the deflection of the airstream by the airfoil. This results in the enlargement of the vertical component of the velocity of the airstream... we may expect that the lifting force depends linearly on the angle of attack. This dependency is in complete agreement with the results of experiments..." Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am. J. Phys. 55(1), January 1987 pg 52
- "The decrease of angles exceeding 25° is plausible. For large angles of attack we get turbulence and thus less deflection downward." Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am. J. Phys. 55(1), January 1987 pg 52
- Batchelor (1967), Section 1.2
- Thwaites (1958), Section I.2
- von Mises (1959), Section I.1
- "Analysis of fluid flow is typically presented to engineering students in terms of three fundamental principles: conservation of mass, conservation of momentum, and conservation of energy." Charles N. Eastlake An Aerodynamicist’s View of Lift, Bernoulli, and Newton THE PHYSICS TEACHER Vol. 40, March 2002 Archived copy (PDF). (PDF) оригіналу за 11 квітня 2009. Процитовано 10 вересня 2009.
{{}}
: Обслуговування CS1: Сторінки з текстом «archived copy» як значення параметру title ()
Джерела
- (рос.)
Посилання
- Сила підйомна // Універсальний словник-енциклопедія. — 4-те вид. — К. : Тека, 2006.
Це незавершена стаття з фізики. Ви можете проєкту, виправивши або дописавши її. |
Вікіпедія, Українська, Україна, книга, книги, бібліотека, стаття, читати, завантажити, безкоштовно, безкоштовно завантажити, mp3, відео, mp4, 3gp, jpg, jpeg, gif, png, малюнок, музика, пісня, фільм, книга, гра, ігри, мобільний, телефон, android, ios, apple, мобільний телефон, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, ПК, web, Інтернет
Pidijmalna sila ce skladova zagalnoyi aerodinamichnoyi sili yaka perpendikulyarna do vektora shvidkosti ruhu povitryanogo potoku i diye na aerodinamichnij profil u povitryanomu potoci na vidminu vid skladovoyi zagalnoyi aerodinamichnoyi sili yaka paralelna vektoru shvidkosti i viznachayetsya yak aerodinamichnij opir Aerodinamichni sili sho diyut na krilo litaka 1 tyaga 2 lobovij sprotiv 3 pidijmalna sila 4 vaga Z fizichnoyi tochki zoru priroda pidijmalnoyi sili gruntuyetsya na dvoh zakonah zakonu Bernulli obernena zalezhnist tisku seredovisha na tilo vid shvidkosti jogo obtikannya i Tretogo zakonu Nyutona sila F z yakoyu krilo v povitryanomu potoci tisne na povitryanij potik vidhilyayuchi jogo vniz stvoryuye silu protidiyi F z yakoyu povitryanij potik tisne na krilo z protilezhnim napryamom vgoru Vidpovidno pidijmalna sila krila vinikaye vnaslidok riznici tisku nad krilom i pid nim Aerodinamichna formula pidijmalnoyi sili krila maye viglyad Y C y r V 2 2 S displaystyle Y C y frac rho V 2 2 S de Y pidijmalna sila N Cy koeficiyent pidijmalnoyi sili bezrozmirnisna velichina sho viznachaye pidijmalnu silu krila pevnogo profilyu z vidomim kutom ataki r gustina povitrya na potochnij visoti polotu kg m V shvidkist povitryanogo potoku m s S plosha krila m Takim chinom pidijmalna sila krila zalezhit vid koeficiyenta pidijmalnoyi sili gustini shilnosti povitrya shvidkosti povitryanogo potoku i prichomu u vsih vipadkah napryamlena vgoru perpendikulyarno do nabizhnogo povitryanogo potoku Zagalnij oglyadPlin ridini abo gazu sho teche dovkola poverhni tila vplivaye na nogo deyakoyu siloyu Nemaye riznici chi ce ridina pline povz neruhome tilo chi to tilo peresuvayetsya kriz stalij ob yem ridini Pidijmalna sila ce komponent ciyeyi sili yakij perpendikulyarnij do napryamu potoku sho nasuvayetsya Pidijmalna sila zavzhdi suprovodzhuyetsya siloyu oporu kotrij ye skladovoyu poverhnevoyi sili paralelnoyi do napryamku plinu ridini Pidijmalnu silu zazvichaj pov yazuyut iz krilom litaka hocha vona utvoryuyetsya naspravdi j inshimi obtichnimi tilami v povitri yak ot propeler kajt gvint spojler avtomobilya morski vitrila i povitryani turbini a takozh kilem kermom i pidvodnimi krilami korabliv Pidijmalnu silu takozh vikoristovuyut tvarini osoblivo ptahi kazhani komahi i navit roslini zavdyaki formi nasinnya deyakih derev Hocha zagalne znachennya slova pidijmati peredbachaye shos protilezhne sili tyazhinnya pidijmalna sila zagalom tehnichno mozhe mati bud yakij napryamok vidnosno sili tyazhinnya oskilki vona zadayetsya lishe napryamom plinu a ne tyazhinnyam Koli litak perebuvaye v gorizontalnomu pryamomu poloti bilsha chastina pidijmalnoyi sili dijsno bude protilezhnoyu tyazhinnyu Odnak koli litak v nabori visoti znizhenni chi v kreni pidijmalna sila vidhilena vid vertikali Pidijmalna sila mozhe navit buti napryamlena donizu v deyakih aerobatichnih manevrah abo u spojlera na peregonovomu avtomobili Pidijmalna sila takozh mozhe buti perevazhno gorizontalnoyu napriklad na vitrilnomu sudni Sproshene fizichne poyasnennya pidijmalnoyi sili profilyu krilaProfil krila ce poperechnij rozriz krila Plin potoku povitrya dovkola aerodinamichnogo profilyu Aerodinamichnij profil maye taku obtichnu formu sho zdatna utvoryuvati pidijmalnu silu po velichini bilshu za protidiyu Ploska poverhnya takozh mozhe utvoryuvati pidijmalnu silu ale ne tak diyalno yak aerodinamichnij profil iz nabagato bilshim oporom Isnuye dekilka sposobiv poyasnennya yak profil utvoryuye pidijmalnu silu Deyaki ye skladnishimi abo bilsh matematichno tochni nizh inshi a deyaki obgruntovano ne pravilni Napriklad isnuyut poyasnennya sho gruntuyutsya bezposeredno na Nyutonovih zakonah ruhu i poyasnennya osnovani na zakoni Bernulli Obidva mozhna vikoristovuvati dlya poyasnennya pidijmalnoyi sili Vidhilennya plinu potoku i zakoni Nyutona Profil krila utvoryuye pidijmalnu silu stvoryuyuchi silu napruzhennya vniz na povitrya yake pline povz nogo Vidpovidno do tretogo zakonu Nyutona povitrya povinno stvoriti odnakovu protilezhnu silu napravlenu vgoru na profil yaka i ye pidijmalnoyu siloyu Potik povitrya zminyuye napryam pid chas prohodzhennya povz profil krila i pline trayektoriyeyu sho vidhilyayetsya vniz Vidpovidno do drugogo zakonu Nyutona taka zmina potoku povinna buti viklikana siloyu spryamovanoyu donizu sho diye na povitrya i sprichinenoyu profilem Todi vidpovidno do tretogo zakonu Nyutona povitrya povinno utvoryuvati protilezhnu silu napravlenu vgoru na profil Zagalnij rezultat polyagaye v tomu sho sila protidiyi pidijmalna sila utvoryuyetsya u vidpovid na zminu napryamku ruhu povitrya U razi z krilom litaka krilo porodzhuye silu napravlenu vniz a povitrya porodzhuye silu napravlenu vgoru kotra diye na krilo Povorot potoku donizu sprichinyuye ne lishe nizhnya chastina poverhni profilyu ale i povitrya yake protikaye verhnoyu chastinoyu maye znachnij vnesok v te sho plin povitrya napravlyayetsya vniz Zbilshennya shvidkosti potoku i princip Bernulli Zakon Bernulli stverdzhuye sho u razi rivnogo plinu povitrya z postijnoyu energiyeyu koli vono protikaye kriz dilyanku menshogo tisku vono priskoryuyetsya i navpaki Otzhe isnuye pryamij matematichnij zv yazok mizh tiskom i shvidkistyu tozh yaksho nam vidoma shvidkist ruhu v usih tochkah povitryanogo potoku mi mozhemo rozrahuvati tisk i navpaki Dlya bud yakogo aerodinamichnogo profilyu kotrij utvoryuye pidijmalnu silu povinna isnuvati riznicya tisku tobto menshij serednij tisk povitrya v verhnij chastini porivnyano z nizhnoyu Princip Bernulli stverdzhuye sho cya riznicya tisku povinna vrivnovazhuvatisya rizniceyu shvidkosti ruhu potoku Zberezhennya masi Pochinayuchi iz shematichnogo predstavlennya potoku v teoriyi i doslidah zbilshennya shvidkosti plinu nad verhnoyu chastinoyu poverhni mozhna poyasniti z tochki zoru stiskannya strumeniv umovnih trub potoku i zberezhennya masi Yaksho vvazhati sho povitrya ye nestisnenim shvidkist ob yemnogo plinu tobto litriv na hvilinu maye buti postijnim v kozhnomu strumeni oskilki materiya ne mozhe utvoritisya chi zniknuti Yaksho strumin staye tonshim shvidkist plinu povinna zrosti u zvuzhenij chastini abi zberegti postijnu shvidkist Ce ye zastosuvannya zakonu zberezhennya masi Verhni strumenevi trubki zvuzhuyutsya koli voni peretikayut dovkola profilyu Zakon zberezhennya mas privodit do tverdzhennya sho shvidkist potoku maye zrosti oskilki plosha strumenyu zmenshuyetsya Tak samo nizhni strumeni rozshiryuyutsya a techiya spovilnyuyetsya Iz principu Bernulli tisk na verhnyu poverhnyu de potik ruhayetsya shvidshe maye buti menshim za tisk na nizhnij chastini profilyu de potik pline povilnishe Isnuye riznicya tisku yaka utvoryuye zagalnu aerodinamichnu silu yaka napravlena dogori Vadi tlumachennya sho zasnovani na zakoni Bernulli Vishenavedene poyasnennya ne roz yasnyuye chomu rozmir strumeniv zminyuyetsya Abi zrozumiti cherez sho plin povitrya ye same takim neobhidnij bilsh skladnij analiz Inodi dlya dovedennya prichini chomu zminyuyetsya rozmir strumeniv navoditsya argument iz geometriyi stverdzhuyetsya sho verhnya chastina pereshkodzhaye abo stiskaye povitrya bilshe nizh nizhnya zvidsi vinikaye zvuzhennya strumeniv Dlya zvichajnoyi formi profilyu krila v yakih nizhnya chastina bilsh ploska a verh opuklij ce maye yakijs intuyitivnij sens Ale ce ne roz yasnyuye yak ploski poverhni simetrichni profili vitrila vitrilnikiv abo zvichajni profili pid chas perevernutogo polotu mozhut utvoryuvati pidijmalnu silu i sprobi rozrahuvati pidijmalnu silu na osnovi sumarnogo zvuzhuvannya ne daye zmogu peredbachiti eksperimentalni rezultati Zagalne poyasnennya zasnovane na principi Bernulli govorit pro te sho povitrya povinne prohoditi povz verhnyu i nizhnyu chastinu profilyu za odnakovij chas i ce viznachaye zbilshennya shvidkosti na dovshomu verhnomu boci krila Ale ce tverdzhennya ye hibnim zazvichaj vidbuvayetsya tak sho chastinki plinu prohodyachi povz verhnyu poverhnyu dosyagayut zadnoyi krajki krila ranishe nizh koli prohodyat povz nizhnyu Riznicya tisku Tisk ce sila napruzhennya na odinicyu ploshi utvoryuyetsya povitryam i diye na nogo samogo i na poverhni do yakih vono torkayetsya Pidijmalna sila peredayetsya cherez tisk sho diye perpendikulyarno do poverhni aerodinamichnogo profilyu Povitrya postijno maye fizichnij dotik z usima tochkami Otzhe zagalna sila virazhayetsya yak riznicya tisku Napryam zagalnoyi sili viplivaye z togo sho serednij tisk na verhnij chastini poverhni ye menshim nizh serednij tisk na nizhnij chastini Viniknennya ciyeyi riznici tisku pov yazano iz vignutim plinom povitrya Kozhnogo razu koli ridina pline vignutoyu trayektoriyeyu utvoryuyetsya gradiyent tisku perpendikulyarnij napryamku plinu v yakomu bilshij tisk utvoryuyetsya na zovnishnij chastini krivoyi i menshij na vnutrishnij Cej pryamij zv yazok mizh vignutimi strumenyami plinu i rizniceyu tisku buv otrimanij iz drugogo zakonu Nyutona she 1754 roku Leonardom Ejlerom d p d R r v 2 R displaystyle frac operatorname d p operatorname d R rho frac v 2 R Liva chastina rivnyannya zadaye riznicyu tisku sho perpendikulyarna plinu potoku V pravij chastini r ce gustina v ce shvidkist i R radius vikrivlennya Cya formula pokazuye sho bilshi shvidkosti i znachnisha vignutist stvoryuyut bilshu riznicyu tisku i sho dlya pryamolinijnogo potoku R riznicya tisku dorivnyuvatime nulyu Forma aerodinamichnogo profilyu Vignutij aerodinamichnij profil u porivnyanni iz simetrichnim aerodinamichnim profilem Pidijmalna sila zalezhit vid formi aerodinamichnogo profilyu osoblivo vid stepeni jogo en krivini za yakoyi verhnya chastina poverhni bilsh vignuta nizh nizhnya chastina poverhni Vzagali zbilshennya vignutosti zbilshuye pidijmalnu silu Vignuti aerodinamichni profili zdatni utvoryuvati pidijmalnu silu pri nulovomu kuti ataki Koli liniya hordi v gorizonti zadnya krajka krila napravlena donizu otzhe povitrya yake protikaye povz zadnyu krajku vidhilyayetsya vniz Koli vignutij profil perevernutij navpaki mozhna pidibrati takij kut ataki sho pidijmalna sila bude napravlena vgoru Ce poyasnyuye yak litak mozhe zdijsnyuvati perevernutij polit Kut ataki Kut ataki ce kut mizh en aerodinamichnogo profilyu i nabiglim plinom povitrya Simetrichnij aerodinamichnij profil bude utvoryuvati nulovu pidijmalnu silu u razi nulovogo kuta ataki Ale iz zbilshennyam kuta ataki povitrya vidhilyatimetsya na bilshij kut i vertikalna skladova shvidkosti povitryanogo plinu zbilshuyetsya zavdyaki comu utvoryuyuchi bilshu pidijmalnu silu Dlya malih kutiv simetrichnij profil bude utvoryuvati pidijmalnu silu proporcijnu do velichini kuta ataki Iz zbilshennyam kuta ataki pidijmalna sila nabuvaye najbilshogo znachennya pri deyakomu kuti zbilshennya kuta ataki bilshe nizh cej kritichnij kut ataki prizvodit do vidokremlennya potoku vid verhnoyi chastini krila potik perestaye menshe vidhilyatisya vniz i profil utvoryuye menshe pidijmalnoyi sili Ce yavishe nazivayut zvalyuvannyam Parametri plinu ta inshe Do navkolishnih umov seredovisha sho vplivayut na pidijmalnu silu stosuyutsya shilnist v yazkist i shvidkist plinu Pidijmalna sila proporcijna shilnosti seredovisha i priblizno proporcijna kvadratu shvidkosti plinu Shilnist zi svogo boku mozhe zalezhati vid temperaturi i na visokih shvidkostyah sho perevishuyut shvidkist zvuka v seredovishi efektami stiskannya Pidijmalna sila takozh zalezhit vid rozmiru krila i zagalom proporcijna vid ploshi krila sho sproektovana na napryam pidijmalnoyi sili V teoriyi aerodinamiki j inzhenernih rozrahunkah chasto ye zruchnim viraziti pidijmalnu silu kilkisno cherez koeficiyent pidijmalnoyi sili sho viznachenij takim chinom shobi vrahuvati ci proporcijni parametri Matematichni teoriyi pidijmalnoyi siliMatematichni teoriyi pidijmalnoyi sili osnovani na mehanici sucilnih ridin pripuskayuchi sho povitrya pline yak neperervna materiya Pidijmalna sila utvoryuyetsya u vidpovidnosti do osnovopolozhnih zakoniv fiziki najbilsh potribnimi ye nastupni tri zakoni Zberezhennya impulsiv sho natomist ye naslidkom Nyutonivskih zakoniv ruhu osoblivo drugogo zakonu Nyutona yakij pov yazuye silu prikladenu do elementu povitrya iz zminoyu shvidkosti impulsu Zberezhennya mas yakij pripuskaye sho poverhnya profilyu krila ye neproniknoyu dlya povitrya kotre peretikaye dovkola Zberezhennya energiyi yakij govorit sho energiya ne mozhe buti stvorena chi znishena Koeficiyent pidijmalnoyi sili Koeficiyent pidijmalnoyi sili sho bezposeredno vplivaye na pidijmalnu silu krila ce bezrozmirna velichina sho viznachaye pidijmalnu silu krila pevnogo profilyu v zalezhnosti vid kutu ataki Koeficiyent viznachayetsya doslidno v aerodinamichnij trubi abo za teoremoyu Zhukovskogo Formulu rozrahunku pidijmalnoyi sili cherez koeficiyent pidijmalnoyi sili rozrobili brati Rajt i Dzhon Smiton na pochatku XX stolittya Div takozhAerodinamika LitakPrimitki NASA Glenn Research Center Arhiv originalu za bereznya 9 2009 Procitovano 4 bereznya 2009 The amount of aerodynamic lift will be usually slightly more or less than gravity depending on the thrust level and vertical alignment of the thrust line A side thrust line will result in some lift opposing side thrust as well Clancy L J Aerodynamics Section 14 6 Clancy L J Aerodynamics Section 5 2 Isnuye bagato teorij yak utvoryuyetsya pidijmalna sila Na zhal bagato z cih teorij sho mozhna prochitati v enciklopediyah na veb storinkah abo navit u knizhkah ye nevirnimi sprichinyayuchi ne potribnij bezlad dumok u studentiv NASA http www grc nasa gov WWW K 12 airplane wrong1 html 27 kvitnya 2014 u Wayback Machine Bilshist tekstiv navodyat formulu Bernulli bez vivedennya a takozh bez elementarnogo poyasnennya Yaksho govoryat pro pidijmalnu silu aerodinamichnogo profilyu poyasnennya i diagrami majzhe zavzhdi nepravilni Prinajmni dlya vvidnogo kursu pidijmalnu silu slid poyasnyuvati prostishe z tochki zoru zakonu Nyutona de tyaga ye rivnoyu shvidkosti zmini momentu nizhidnogo povitrya z chasom Cliff Swartz et al Quibbles Misunderstandings and Egregious Mistakes Survey of High School Physics Texts THE PHYSICS TEACHER Vol 37 May 1999 pg 300 http aapt scitation org doi abs 10 1119 1 880274 25 serpnya 2019 u Wayback Machine Odnim iz poyasnen togo yak krilo litaka utvoryuye pidijmalnu silu ye te sho vona ye rezultatom formi profilyu krila povitrya pline shvidshe povz verhnyu chastinu nizh nizhnyu tomu sho potribno obignuti bilshij shlyah I zvisno yaksho privesti v priklad tonkij profil vitrila ce poyasnennya ne pracyuye The Aerodynamics of Sail Interaction by Arvel Gentry Proceedings of the Third AIAA Symposium on the Aero Hydronautics of Sailing 1971 http www arvelgentry com techs The 20Aerodynamics 20of 20Sail 20Interaction pdf 7 lipnya 2011 u Wayback Machine Chasto v yakosti poyasnennya privodyat priklad sho shlyah yakij treba zdolati po verhnij chastini krila ye dovshim tomu povitrya povinne ruhatisya shvidzhe Ce poyasnennya ye nevirnim A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am J Phys Vol 55 No January 1 1987 Pidijmalna sila sho diye na tilo maye prostu prirodu ce reakciya tverdogo tila na povorot ruhomoyi ridini Chomu plin potoku povodit sebe v takij sposib Os de z yavlyayetsya skladnist tomu sho mi mayemo spravu iz plinom Prichinoyu povorotu potoku ye odnochasne zberezhennya masi momentu yak linijnogo tak i kutovogo i energiyi potoku I ce ne zrozumilo dlya ridkogo stanu oskilki masa mozhe ruhatisya i pererozpodilyatisya na vidminu vid tverdogo tila ale mozhe robiti ce lishe takim chinom shob zberegti moment masu na shvidkist i energiyu masu na shvidkist v kvadrati Zmina shvidkosti v odnomu napryami mozhe prizvesti do zmini shvidkosti v perpendikulyarnomu napryamku v potoci sho ne vidbuvayetsya v mehanici tverdogo tila Tochne opisannya togo yak ruhayetsya potik ye skladnoyu zadacheyu zanadto prostoyu dlya uyavlennya bagatma lyudmi Tomu mi stvoryuyemo sprosheni modeli I koli mi sproshuyemo mi zalishayemo shos za mezhami Takim chinom model ye ne doskonaloyu Bilshist dovodiv pro pidijmalnu silu roblyat lyudi sho znahodyat nedoliki riznih modelej tomu yih argumenti yak pravilo dosit zakonni Tom Benson of NASA s Glenn Research Center in an interview with AlphaTrainer Com http www alphatrainer com pages corner htm 27 kvitnya 2012 u Wayback Machine Both approaches are equally valid and equally correct a concept that is central to the conclusion of this article Charles N Eastlake An Aerodynamicist s View of Lift Bernoulli and Newton THE PHYSICS TEACHER Vol 40 March 2002 http www df uba ar users sgil physics paper doc papers phys fluids Bernoulli Newton lift pdf 11 kvitnya 2009 u Wayback Machine Ison David Plane amp Pilot arhiv originalu za 24 veresnya 2015 procitovano 14 sichnya 2011 efekt yakij stvoryuye krilo vono nadaye potoku povitrya komponent shvidkosti sho napravlenij vniz Siloyu protidiyi vidhilenoyu povitryanoyi masi povinna buti sila yaka stvoryuye protilezhnij rivnij komponent In Halliday David Resnick Robert Fundamentals of Physics 3rd Edition John Wiley amp Sons s 378 Anderson and Eberhardt 2001 Langewiesche 1944 When air flows over and under an airfoil inclined at a small angle to its direction the air is turned from its course Now when a body is moving in a uniform speed in a straight line it requires force to alter either its direction or speed Therefore the sails exert a force on the wind and since action and reaction are equal and opposite the wind exerts a force on the sails In Morwood John Sailing Aerodynamics Adlard Coles Limited s 17 Lift is a force generated by turning a moving fluid If the body is shaped moved or inclined in such a way as to produce a net deflection or turning of the flow the local velocity is changed in magnitude direction or both Changing the velocity creates a net force on the body NASA Glenn Research Center Arhiv originalu za lipnya 5 2011 Procitovano 7 lipnya 2009 Essentially due to the presence of the wing its shape and inclination to the incoming flow the so called angle of attack the flow is given a downward deflection as shown in Fig 2 It is Newton s third law at work here with the flow then exerting a reaction force on the wing in an upward direction thus generating lift Vassilis Spathopoulos Flight Physics for Beginners Simple Examples of Applying Newton s Laws The Physics Teacher Vol 49 September 2011 pg 373 http tpt aapt org resource 1 phteah v49 i6 p373 s1 Arhivovano 18 chervnya 2013 u Archive is The main fact of all heavier than air flight is this the wing keeps the airplane up by pushing the air down In Langewiesche Wolfgang 1990 Stick and Rudder An Explanation of the Art of Flying McGraw Hill s 6 10 ISBN 0 07 036240 8 Birds and aircraft fly because they are constantly pushing air downwards L dp dt Here L is the lift force and dp dt is the rate at which downward momentum is imparted to the airflow Flight without Bernoulli Chris Waltham THE PHYSICS TEACHER Vol 36 Nov 1998 http www df uba ar users sgil physics paper doc papers phys fluids fly no bernoulli pdf 28 veresnya 2011 u Wayback Machine Clancy L J Aerodynamics Pitman 1975 page 76 This lift force has its reaction in the downward momentum which is imparted to the air as it flows over the wing Thus the lift of the wing is equal to the rate of transport of downward momentum of this air if the air is to produce an upward force on the wing the wing must produce a downward force on the air Because under these circumstances air cannot sustain a force it is deflected or accelerated downward Newton s second law gives us the means for quantifying the lift force Flift m v t mv t The lift force is equal to the time rate of change of momentum of the air Norman F Smith Bernoulli and Newton in Fluid Mechanics The Physics Teacher 10 451 1972 DOI 10 1119 1 2352317 A complete statement of Bernoulli s Theorem is as follows In a flow where no energy is being added or taken away the sum of its various energies is a constant consequently where the velocity increases the pressure decreases and vice versa Smith Norman F Bernoulli Newton and Dynamic Lift Part I School Science and Mathematics 73 3 181 186 doi 10 1111 j 1949 8594 1973 tb08998 x Anderson 2004 The effect of squeezing streamlines together as they divert around the front of an airfoil shape is that the velocity must increase to keep the mass flow constant since the area between the streamlines has become smaller Charles N Eastlake An Aerodynamicist s View of Lift Bernoulli and Newton THE PHYSICS TEACHER Vol 40 March 2002 Archived copy PDF PDF originalu za 11 kvitnya 2009 Procitovano 10 veresnya 2009 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya There is no way to predict from Bernoulli s equation alone what the pattern of streamlines will be for a particular wing Halliday and Resnick Fundamentals of Physics 3rd Ed Extended pg 378 The generation of lift may be explained by starting from the shape of streamtubes above and below an airfoil With a constriction above and an expansion below it is easy to demonstrate lift again via the Bernoulli equation However the reason for the shape of the streamtubes remains obscure Jaakko Hoffren Quest for an Improved Explanation of Lift American Institute of Aeronautics and Astronautics 2001 pg 3 PDF Arhiv originalu PDF za 7 grudnya 2013 Procitovano 26 lipnya 2012 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya There is nothing wrong with the Bernoulli principle or with the statement that the air goes faster over the top of the wing But as the above discussion suggests our understanding is not complete with this explanation The problem is that we are missing a vital piece when we apply Bernoulli s principle We can calculate the pressures around the wing if we know the speed of the air over and under the wing but how do we determine the speed How Airplanes Fly A Physical Description of Lift David Anderson and Scott Eberhardt Archived copy originalu za 26 sichnya 2016 Procitovano 26 sichnya 2016 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya The problem with the Venturi theory is that it attempts to provide us with the velocity based on an incorrect assumption the constriction of the flow produces the velocity field We can calculate a velocity based on this assumption and use Bernoulli s equation to compute the pressure and perform the pressure area calculation and the answer we get does not agree with the lift that we measure for a given airfoil NASA Glenn Research Center Arhiv originalu za 17 lipnya 2012 Procitovano 26 lipnya 2012 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya A concept uses a symmetrical convergent divergent channel like a longitudinal section of a Venturi tube as the starting point It is widely known that when such a device is put in a flow the static pressure in the tube decreases When the upper half of the tube is removed a geometry resembling the airfoil is left and suction is still maintained on top of it Of course this explanation is flawed too because the geometry change affects the whole flowfield and there is no physics involved in the description Jaakko Hoffren Quest for an Improved Explanation of Lift Section 4 3 American Institute of Aeronautics and Astronautics 2001 PDF Arhiv originalu PDF za 7 grudnya 2013 Procitovano 26 lipnya 2012 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya This answers the apparent mystery of how a symmetric airfoil can produce lift This is also true of a flat plate at non zero angle of attack Charles N Eastlake An Aerodynamicist s View of Lift Bernoulli and Newton Archived copy PDF PDF originalu za 11 kvitnya 2009 Procitovano 10 veresnya 2009 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya This classic explanation is based on the difference of streaming velocities caused by the airfoil There remains however a question How does the airfoil cause the difference in streaming velocities Some books don t give any answer while others just stress the picture of the streamlines saying the airfoil reduces the separations of the streamlines at the upper side Fig 1 They do not say how the airfoil manages to do this Thus this is not a sufficient answer Klaus Weltner Bernoulli s Law and Aerodynamic Lifting Force The Physics Teacher February 1990 p 84 http scitation aip org getpdf servlet GetPDFServlet filetype pdf amp id PHTEAH000028000002000084000001 amp idtype cvips amp prog normal nedostupne posilannya z kvitnya 2019 there is nothing in aerodynamics requiring the top and bottom flows having to reach the trailing edge at the same time This idea is a completely erroneous explanation for lift The flow on top gets to the trailing edge long before the flow on the bottom because of the circulation flow field Arvel Gentry Origins of Lift PDF Arhiv originalu PDF za 13 serpnya 2012 Procitovano 26 lipnya 2012 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya A uniform pressure surrounding a body does not create a net force See buoyancy Therefore pressure differences are needed to exert a force on a body immersed in a fluid For example see 1967 An Introduction to Fluid Dynamics Cambridge University Press s 14 15 ISBN 0 521 66396 2 if a streamline is curved there must be a pressure gradient across the streamline Babinsky Holger November 2003 How do wings work PDF Physics Education Thus a distribution of the pressure is created which is given in Euler s equation The physical reason is the aerofoil which forces the streamline to follow its curved surface The low pressure at the upper side of the aerofoil is a consequence of the curved surface A comparison of explanations of the aerodynamic lifting force Klaus Weltner Am J Phys Vol 55 No January 1 1987 pg 53 http aapt scitation org doi pdf 10 1119 1 14960 28 kvitnya 2021 u Wayback Machine Clancy 1975 Section 5 2 Abbott and von Doenhoff 1958 Section 4 2 With an angle of attack of 0 we can explain why we already have a lifting force The air stream behind the aerofoil follows the trailing edge The trailing edge already has a downward direction if the chord to the middle line of the profile is horizontal Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am J Phys 55 1 January 1987 p 52 the important thing about an aerofoil say an aircraft wing is not so much that its upper surface is humped and its lower surface is nearly flat but simply that it moves through the air at an angle This also avoids the otherwise difficult paradox that an aircraft can fly upside down N H Fletcher Mechanics of Flight Physics Education July 1975 http iopscience iop org 0031 9120 10 5 009 pdf 0031 9120 10 5 009 pdf It requires adjustment of the angle of attack but as clearly demonstrated in almost every air show it can be done hyperphysics Georgia State University Department of Physics and Astronomy http hyperphysics phy astr gsu edu hbase fluids airfoil html c2 8 lipnya 2012 u Wayback Machine You can argue that the main lift comes from the fact that the wing is angled slightly upward so that air striking the underside of the wing is forced downward The Newton s 3rd law reaction force upward on the wing provides the lift Increasing the angle of attack can increase the lift but it also increases drag so that you have to provide more thrust with the aircraft engines hyperphysics Georgia State University Department of Physics and Astronomy Archived copy originalu za 14 zhovtnya 2012 Procitovano 26 lipnya 2012 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya If we enlarge the angle of attack we enlarge the deflection of the airstream by the airfoil This results in the enlargement of the vertical component of the velocity of the airstream we may expect that the lifting force depends linearly on the angle of attack This dependency is in complete agreement with the results of experiments Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am J Phys 55 1 January 1987 pg 52 The decrease of angles exceeding 25 is plausible For large angles of attack we get turbulence and thus less deflection downward Klaus Weltner A comparison of explanations of the aerodynamic lifting force Am J Phys 55 1 January 1987 pg 52 Batchelor 1967 Section 1 2 Thwaites 1958 Section I 2 von Mises 1959 Section I 1 Analysis of fluid flow is typically presented to engineering students in terms of three fundamental principles conservation of mass conservation of momentum and conservation of energy Charles N Eastlake An Aerodynamicist s View of Lift Bernoulli and Newton THE PHYSICS TEACHER Vol 40 March 2002 Archived copy PDF PDF originalu za 11 kvitnya 2009 Procitovano 10 veresnya 2009 a href wiki D0 A8 D0 B0 D0 B1 D0 BB D0 BE D0 BD Cite web title Shablon Cite web cite web a Obslugovuvannya CS1 Storinki z tekstom archived copy yak znachennya parametru title posilannya Dzherela ros PosilannyaSila pidjomna Universalnij slovnik enciklopediya 4 te vid K Teka 2006 Ce nezavershena stattya z fiziki Vi mozhete dopomogti proyektu vipravivshi abo dopisavshi yiyi