www.wikidata.uk-ua.nina.az
Teoriya serednogo polya abo Teoriya samouzgodzhenogo polya pidhid do vivchennya povedinki velikih ta skladnih stohastichnih sistem u fizici ta teoriyi imovirnostej cherez doslidzhennya prostishih modelej Taki modeli rozglyadayut chislenni mali komponenti sho vzayemodiyut mizh soboyu Vpliv inshih individualnih komponent na zadanij ob yekt aproksimuyetsya userednenim efektom zavdyaki chomu zadacha bagatoh til zvoditsya do odnochastinkovoyi zadachi Ideya vpershe sklalasya v fizici v robotah P yera Kyuri 1 ta P yera Vejssa sho opisuvali fazovij perehid 2 Analogichni pidhodi znajshli zastosuvannya v modelyah epidemij 3 teoriyi cherg 4 v analizi komp yuternih merezh ta teoriyi igor 5 Zadachu bagatoh til z vrahuvannyam vzayemodiyi mizh nimi rozv yazati vazhko hiba sho dlya najprostishih vipadkiv teoriya vipadkovih poliv odnovimirna model Izinga Tomu sistemu N til zaminyayut odnochastinkovoyu zadacheyu z dobre pidibranim zovnishnim potencialom yakij zaminyaye diyu vsih inshih chastinok na vibranu Veliku skladnist maye napriklad pri obchislenni funkciyi rozpodilu v statistichnij mehanici vrahuvannya perestanovok pri obchislenni vzayemodiyi v gamiltoniani pri pidsumovuvanni po vsih stanah Meta teoriyi serednogo polya obijti cyu kombinatoriku V riznih oblastyah nauki teoriya serednogo polya vidoma pid svoyimi vlasnimi nazvami sered yakih nablizhennya Bregga Vilyamsa model gratki Bete teoriya Landau nablizhennya P yera Vejssa teriya rozchiniv Flori Gagginza abo teoriya Shejtyensa Flera Osnovna ideya teoriyi serednogo polya zaminiti vsi diyi na vibrane tilo userednenoyu abo efektivnoyu vzayemodiyeyu yaku inodi nazivayut molekulyarnim polem 6 Ce zvodit bud yaku zadachu bagatoh til do efektivnoyi odnochastinkovoyi zadachi Legkist rozv yazannya zadachi teoriyi serednogo polya oznachaye otrimannya pevnogo ponyattya pro povedinku sistemi z porivnyano neznachnimi vitratami U klasichnij teoriyi polya funkciyu Gamiltona mozhna rozklasti v ryad vikoristovuyuchi yak parametr rozkladu velichinu fluktuacij navkolo serednogo polya Serednye pole mozhna todi rozglyadati yak nulovij poryadok cogo rozkladu Ce oznachaye sho teoriya serednogo polya ne mistit zhodnih fluktuacij ale ce vidpovidaye ideyi togo sho vzayemodiyi zaminyayutsya na serednye pole Dovoli chasto pri vivchenni fluktuacij teoriya serednogo polya ye startovim majdanchikom dlya doslidzhennya fluktuacij pershogo chi drugogo poryadku Zagalom viznachennya togo naskilki nablizhennya serednogo polya pracyuvatime dlya konkretnoyi zadachi silno zalezhit vid rozmirnosti U teoriyi serednogo polya chislenni vzayemodiyi zaminyayutsya odnoyu efektivnoyu diyeyu Todi prirodno yaksho pole chi chastinka v pochatkovij sistemi maye bagato partneriv vzayemodiyi to teoriya serednogo polya bude efektivnishoyu Ce spravedlivo dlya visokih rozmirnostej tam de funkciya Gamiltona mistit u sobi sili z velikim radiusom diyi abo koli chastinki protyazhni napriklad polimeri Kriterij Ginzburga ye formalnim virazom togo yak fluktuaciyi roblyat nablizhennya serednogo polya poganim chasto zalezhno vid prostorovoyi rozmirnosti sistemi Todi yak teoriya serednogo polya sklalasya v statistichnij mehanici vona znajsha zastosuvannya v inshih oblastyah takih yak interferenciya teoriyi grafiv nejronauci ta pri vivchenni shtuchnogo intelektu Zmist 1 Formalnij pidhid 2 Zastosuvannya 2 1 Model Izinga 2 2 Zastosuvannya do inshih sistem 3 Uzagalnennya dlya zalezhnih vid chasu serednih poliv 4 VinoskiFormalnij pidhid red V osnovi formalnogo pidhodu do teoriyi serednogo polya lezhit nerivnist Bogolyubova Vona stverdzhuye sho vilna energiya sistemi z funkciyeyu Gamiltona H H 0 D H displaystyle mathcal H mathcal H 0 Delta mathcal H nbsp maye verhnyu mezhu F F 0 d e f H 0 T S 0 displaystyle F leq F 0 stackrel mathrm def langle mathcal H rangle 0 TS 0 nbsp de S 0 displaystyle S 0 nbsp entropiya a userednennya provoditsya po rivnovazhnomu ansamblyu sistemi z funkciyeyu Gamiltona H 0 displaystyle mathcal H 0 nbsp U specialnomu vipadku koli osnovna funkciya Gamiltona opisuye sistemu bez vzayemodiyi a tomu yiyi mozhna zapisati yak H 0 i 1 N h i 3 i displaystyle mathcal H 0 sum i 1 N h i left xi i right nbsp de 3 i displaystyle left xi i right nbsp skorochennya dlya poznachennya stupenyu vilnosti okremih skladovih statistichnoyi sistemi atomiv spiniv tosho mozhna rozglyadati utochnennya verhnoyi mezhi minimizuyuchi pravostoronnyu chastinu nerivnosti Minimizaciya osnovnoyi sistemi ye todi najkrashim nablizhennyam do zadanoyi Vona vidoma yak nablizhennya serednogo polya Najchastishe funkciya Gamiltona sistemi yaku potribno dosliditi mistit lishe parnu vzayemodiyu tobto H i j P V i j 3 i 3 j displaystyle mathcal H sum i j in mathcal P V i j left xi i xi j right nbsp de P displaystyle mathcal P nbsp nabir parnih vzayemodij Todi proceduru minimizaciyi mozhna provesti formalno Viznachayetsya T r i f 3 i displaystyle rm Tr i f xi i nbsp yak uzagalnena suma sposterezhuvanih f displaystyle f nbsp po stupenyah vilnosti odniyeyi komponenti suma dlya diskretnih velichin intergal dlya neperervnih Vilna energiya zadayetsya nablizheno yak F 0 displaystyle F 0 nbsp T r 1 2 N H 3 1 3 2 3 N P 0 N 3 1 3 2 3 N displaystyle rm Tr 1 2 N mathcal H xi 1 xi 2 xi N P 0 N xi 1 xi 2 xi N nbsp k T T r 1 2 N P 0 N 3 1 3 2 3 N log P 0 N 3 1 3 2 3 N displaystyle kT rm Tr 1 2 N P 0 N xi 1 xi 2 xi N log P 0 N xi 1 xi 2 xi N nbsp de P 0 N 3 1 3 2 3 N displaystyle P 0 N xi 1 xi 2 xi N nbsp imovirnist znajti osnovnu sistemu v stani zi zminnimi 3 1 3 2 3 N displaystyle xi 1 xi 2 xi N nbsp Cya jmovirnist zadayetsya normalizovanim bolcmannovim faktorom P 0 N 3 1 3 2 3 N 1 Z 0 N e b H 0 3 1 3 2 3 N i 1 N 1 Z 0 e b h i 3 i d e f i 1 N P 0 i 3 i displaystyle begin aligned P 0 N xi 1 xi 2 xi N amp frac 1 Z 0 N e beta mathcal H 0 xi 1 xi 2 xi N amp prod i 1 N frac 1 Z 0 e beta h i left xi i right stackrel mathrm def prod i 1 N P 0 i xi i end aligned nbsp de Z 0 displaystyle Z 0 nbsp statistichna suma Todi F 0 i j P T r i j V i j 3 i 3 j P 0 i 3 i P 0 j 3 j k T i 1 N T r i P 0 i 3 i log P 0 i 3 i displaystyle begin aligned F 0 amp sum i j in mathcal P rm Tr i j V i j left xi i xi j right P 0 i xi i P 0 j xi j amp kT sum i 1 N rm Tr i P 0 i xi i log P 0 i xi i end aligned nbsp Dlya minimizaciyi beretsya pohidna shodo jmovirnosti odniyeyi stupeni vilnosti P 0 i displaystyle P 0 i nbsp vikoristovuyuchi neviznacheni mnozhniki Lagranzha dlya normuvannya Kincevij rezultat sistema samouzgodzhenih rivnyan P 0 i 3 i 1 Z 0 e b h i M F 3 i i 1 2 N displaystyle P 0 i xi i frac 1 Z 0 e beta h i MF xi i qquad i 1 2 N nbsp de serednye pole zadayetsya yak h i M F 3 i j i j P T r j V i j 3 i 3 j P 0 j 3 j displaystyle h i MF xi i sum j i j in mathcal P rm Tr j V i j left xi i xi j right P 0 j xi j nbsp Zastosuvannya red Teoriyu serednogo polya mozhna zastosovuvati dlya nizki fizichnih sistem vivchayuchi napriklad fazovi perehodi 7 Model Izinga red Nehaj model Izinga viznachena na d displaystyle d nbsp vimirnij gratci Gamiltonian zadayetsya yak H J i j s i s j h i s i displaystyle H J sum langle i j rangle s i s j h sum i s i nbsp de i j displaystyle sum langle i j rangle nbsp poznachaye sumu po parah najblizhchih susidiv i j displaystyle langle i j rangle nbsp s i 1 displaystyle s i pm 1 nbsp a s j displaystyle s j nbsp sut spini najblizhchih susidiv Vvodyachi fluktuacijni vidhilennya vid serednogo znachennya m i s i displaystyle m i equiv langle s i rangle nbsp gamiltonian mozhna perepisati H J i j m i d s i m j d s j h i s i displaystyle H J sum langle i j rangle m i delta s i m j delta s j h sum i s i nbsp de fluktuaciyi spinu poznacheno d s i s i m i displaystyle delta s i equiv s i m i nbsp Rozkladayuchi pravu chastinu mozhna otrimati chlen sho zalezhit tilki vid serednogo znachennya spinu i ne zalezhit vid spinovoyi konfiguraciyi Cej chlen trivialnij vin ne vplivaye na statistichni vlastivosti sistemi Nastupnij chlen mistit dobutok serednogo znachennya spinu ta fluktuacijogo chlenu Nareshti ostannij chlen mistit dobutki fluktuacij Nablizhennya serednogo polya polyagaye v nehtuvanni cim chlenom drugogo poryadku shodo fluktuacij Ci fluktuaciyi zrostayut u sistemah maloyi rozmirnosti tozh teoriya serednogo polya pracyuye krashe dlya sistem visokoyi rozmirnosti H H M F J i j m i m j m i d s j m j d s i h i s i displaystyle H approx H MF equiv J sum langle i j rangle m i m j m i delta s j m j delta s i h sum i s i nbsp Dodanki mozhna she raz peregrupuvati Krim togo serednye znachennya kozhnogo zi spiniv ne povinno zalezhati vid vuzla oskilki Izingova sistema translyacijno invariatna Tomu H M F J i j m 2 2 m s i m h i s i displaystyle H MF J sum langle i j rangle left m 2 2m s i m right h sum i s i nbsp Sumuvannya po susidah mozhna perepisati i j 1 2 i j n n i displaystyle sum langle i j rangle frac 1 2 sum i sum j in nn i nbsp de n n i displaystyle nn i nbsp najblizhchi susidi i displaystyle i nbsp a mnozhnik 1 2 displaystyle 1 2 nbsp zapobigaye vrahuvannyu odnogo j togo zh dodanka dvichi oskilki v utvorenni kozhnogo zv yazku berut uchast dva spini Sproshennya daye kincevij rezultat H M F J m 2 N z 2 h m J z h e f f i s i displaystyle H MF frac Jm 2 Nz 2 underbrace h mJz h mathrm eff sum i s i nbsp de z displaystyle z nbsp koordinacijne chislo Na cyu poru gamiltonian Izinga rozbito na sumu odnochastinkovih gamiltonianiv z efektivnim serednim polem h e f f h J z m displaystyle h mathrm eff h Jzm nbsp sho ye sumoyu zovnishnogo polya h displaystyle h nbsp ta serednogo polya yake vinikaye zavdyaki susidnim spinam Varto zauvazhiti sho ce serednye pole bezposeredno zalezhit vid chisla najblizhchih susidiv a tomu vid rozminosti sistemi napriklad dlya giperkubichnoyi gratki rozmirnosti d displaystyle d nbsp z 2 d displaystyle z 2d nbsp Cej gamiltonian pidstavlyayut u funkciyu rozpodilu i rozv yazuyut efektivnu odnovimirnu zadachu otrimuyuchi Z e b J m 2 N z 2 2 cosh h m J z k B T N displaystyle Z e beta Jm 2 Nz 2 left 2 cosh left frac h mJz k B T right right N nbsp de N displaystyle N nbsp chislo vuzliv gratki Ce zamknenij j tochnij viraz dlya funkciyi rozpodilu sistemi Z nogo mozhna otrimati vilnu energiyu i rozrazuvati kritichni indeksi Zokrema mozhna otrimati namagnichenist m displaystyle m nbsp v zalezhnosti vid h e f f displaystyle h mathrm eff nbsp Tak otrimano dva rivnyannya sho zadayut spivvidnoshennya mizh m displaystyle m nbsp ta h e f f displaystyle h mathrm eff nbsp sho dozvolyaye viznachiti m displaystyle m nbsp v zalezhnosti vid temperaturi Naslidkom ye nastupne dlya temperatur bilshih vid pevnogo znachennya T c displaystyle T c nbsp yedinim rozv yazkom ye m 0 displaystyle m 0 nbsp Sistema ye paramagnetikom dlya T lt T c displaystyle T lt T c nbsp isnuye dva nenulovih rozv yazki m m 0 displaystyle m pm m 0 nbsp Sistema ye feromagnetikom T c displaystyle T c nbsp znahoditsya zi spivvidnoshennya T c J z k B displaystyle T c frac Jz k B nbsp Cim prodemonstrovano sho teoriya serednogo polya mozhe opisati fazovij perehid u feromagnitnij stan Zastosuvannya do inshih sistem red Analogichno teoriyu serednogo polya mozhna zastosovuvati do inshih gamiltonianiv yak ot Pri vivchenni fazovogo perehodu metal nadprovidnik U comu vipadku analogom namagnichennya ye nadprovidna shilina D displaystyle Delta nbsp Dlya molekulyarnogo polya ridkogo kristalu yake vinikaye koli laplasian polya direktora ne dorivnyuye nulyu Dlya viznachennya optimalnoyi upakovki bokovih lancyuzhkiv aminokislot dlya zadanoyi tretinnoyi strukturi pri peredbachenni budovi bilkiv Uzagalnennya dlya zalezhnih vid chasu serednih poliv red Dokladnishe Dinamichna teoriya serednogo polyaU teoriyi serednogo polya vono vinikaye dlya okremogo vuzla yak skalyarne chi vektorne ale ne zalezhit vid chasu Odnak ce neobov yazkovo u varianti teoriyi yakij nazivayut dinamichnoyu teoriyeyu serednogo polya serednye pole zalezhit vid chasu Napriklad dinamichnu teoriyu mozhna zastosuvati do modeli Gabbarda vivchayuchi perehid metal dielektrik Motta Vinoski red Kadanoff L P 2009 More is the Same Phase Transitions and Mean Field Theories Journal of Statistical Physics 137 5 6 777 797 Bibcode 2009JSP 137 777K arXiv 0906 0653 doi 10 1007 s10955 009 9814 1 Weiss Pierre 1907 L hypothese du champ moleculaire et la propriete ferromagnetique J Phys Theor Appl 6 1 661 690 Arhiv originalu za 3 grudnya 2017 Procitovano 18 kvitnya 2017 Boudec J Y L McDonald D Mundinger J 2007 A Generic Mean Field Convergence Result for Systems of Interacting Objects Fourth International Conference on the Quantitative Evaluation of Systems QEST 2007 s 3 ISBN 0 7695 2883 X doi 10 1109 QEST 2007 8 Arhiv originalu za 3 bereznya 2016 Procitovano 18 kvitnya 2017 Baccelli F Karpelevich F I Kelbert M Y Puhalskii A A Rybko A N Suhov Y M 1992 A mean field limit for a class of queueing networks Journal of Statistical Physics 66 3 4 803 Bibcode 1992JSP 66 803B doi 10 1007 BF01055703 Lasry J M Lions P L 2007 Mean field games Japanese Journal of Mathematics 2 229 doi 10 1007 s11537 007 0657 8 Chaikin P M Lubensky T C 2007 Principles of condensed matter physics vid 4th print Cambridge Cambridge University Press ISBN 978 0 521 79450 3 HE Stanley 1971 Mean field theory of magnetic phase transitions Introduction to phase transitions and critical phenomena Oxford University Press ISBN 0 19 505316 8 Otrimano z https uk wikipedia org w index php title Teoriya serednogo polya amp oldid 36719719